1.stream简介

stream 是一个用来处理集合个数组的api

jdk 8 引入strream的原因:1.去掉for循环,使编程变的更加简单(实际运行效率可能没有for循环高)2.parallel,多核友好,java函数式编程使得编写并行程序如此简单,你需要的仅仅是调用一下parallel()方法

stream的特性: 1.不是数据结构,没有内存存储   2.不支持索引(没有数据,类似于spark中的RDD,只是搭建计算框架,在最后执行时才执行整个流程)   3.延迟计算   4.支持并行  5.很容易生成数组和集合   6.支持过滤查找转化等多种操作

2.Stream运行机制

Stream分为 源source,中间操作,终止操作 流的源可以是一个数组、一个集合、一个生成器方法,一个I/O通 道等等。 一个流可以有零个和或者多个中间操作,每一个中间操作都会返回 一个新的流,供下一个操作使用。一个流只会有一个终止操作 Stream只有遇到终止操作,它的源才开始执行遍历操作

3.Stream的创建

1、通过数组   2、通过集合来   3、通过Stream.generate方法来创建      4、通过Stream.iterate方法来创建    5、其他API创建

创建stream对象,of 方法中,参数为:(T... ..values) 可看做是一个多个同种类型对象组成的集合,forEach()方法,参数为:(Consumer<? super T>action),即一个Consumer接口,泛型为调用Stream中所装载的对象的父类或者自己,比如下面,调用对象为Stream<Student>,泛型为它的父类Teacher

 public static void common_fileInputStream() throws IOException {
String[] arr = {"a", "b", "c", "d", "e", "f", "g", "h"};
Student stu = new Student("q");
Stream<String>stud=Stream.of(arr);
Stream<Student>student=Stream.of(stu,stu,stu,stu);/**1 of : (T... values)*/
Consumer<Teacher> consumer=new Consumer() {
@Override
public void accept(Object o) {
System.out.println("o = " + o);
}
};
student.forEach(consumer);/**参数:(Consumer<? super T> action)*/
// stud.forEach(consumer);
}

4.Stream常用API

中间操作: 过滤 filter 去重 distinct 排序 sorted 截取 limit、skip 转换 map/flatMap  其他 peek

终止操作: 循环 forEach 计算 min、max、count、 average 匹配 anyMatch、 allMatch、 noneMatch、 findFirst、 findAny 汇聚 reduce 收集器 toArray collec

5.代码体现

1.创建Stream并遍历

 List<String> list = Arrays.asList("string", "double", "int");
Stream<List> stream = Stream.of(list);
/**写法一*/
/*Consumer<List>consumer=new Consumer<List>() {
@Override
public void accept(List list) {
System.out.println("list = " + list);
}
};
stream.forEach(consumer);*/
// Consumer<List> consumer = (arr) -> System.out.println(arr);
/**写法二*/
stream.forEach((arr) -> System.out.println(arr)); /**写法三*/
Consumer<List> consumer = System.out::println;
/**函数式接口对应实例对象的方法的引用*/
//stream.forEach(System.out::println);

上述代码中,写法一为常规操作,写法二使用了通常的lanbad表达式,写法三中使用了实例对象引用方法的模式,无论哪种,都没有手动调用Consumer的默认方法accept方法,个人理解forEach中应该有对该方法的默认调用,并且在调用时传入了参数。

2.创建stream的方式

@Test
public void createStream(){
/**方法一,通过集合和数组创建*/
List<String>lis=new ArrayList<String>();
lis.add("a");lis.add("b");lis.add("c");
/**数组*/
List<String>lis1=Arrays.asList("a","b","c");
Stream<List>stream1=Stream.of(lis); /**方法二,通过generate方式创建*/
Stream<Integer>sin=Stream.generate(()->1);
/**这种创建的方式创建出来的流时无限的,需要limit做限制*/
sin.limit(3).forEach(System.out::println);
/**输出结果:1,1,1*/ /**方法三,使用迭代器方式创建*/
Stream<Integer>str=Stream.iterate(0,x->x+1);
str.limit(2).forEach(System.out::println);
/**創建方法4*/
String string="abc";
IntStream intStream=string.chars();
intStream.forEach(System.out::println);
/**輸出結果:97,98,99,即hashcode碼值*/ }

3.stream的几种常见用法组合

1排序,使用排序的时候需要注意排序的值为null的情况

 @Test
public void streamCommonTest() {
/**排序功能*/
String arr[] = {"baierhu", "zhaowenb", "cheng", "2"};
Stream<String> str = Stream.of(arr);
//List list= str.sorted().collect(Collectors.toList());
//System.out.println("arrr = " + list);
/**输出结果:默认为字典排序:arrr = [2, baierhu, cheng, zhaowenb]*/ List list1=str.sorted(new Comparator<String>() {
@Override
public int compare(String o1, String o2) {
return o1.length()-o2.length();
}
}).collect(Collectors.toList());
System.out.println(list1);
/**输出结果:按照长度排序*/ Student [] stu={new Student(1,"baierhu"),new Student(2,"zwen"),new Student(null,"aaa"),new Student(null,"chaochao")} ;
/**Stream.of(stu).sorted(new Comparator<Student>() {
@Override
public int compare(Student o1, Student o2) {
return o1.getName().length()-o2.getName().length();
}
}).collect(Collectors.toList()).forEach(System.out::println);*/
// 输出结果:Student{id=2, name='zwen'}
//Student{id=1, name='baierhu'}
//Student{id=null, name='chaochao'} List<Student>lis=Stream.of(stu).sorted((a,b)->a.getName().length()-b.getName().length()).collect(Collectors.toList());
System.out.println("lis = " + lis); List<Student>lis111=Stream.of(stu).sorted((a,b)->{
if(a.getId()==null && b.getId()==null) return 0;
else if(a.getId()==null) return 0-b.getId();
else if(b.getId()==null) return a.getId()-0;
else return a.getId()-b.getId();}).collect(Collectors.toList());
System.out.println("lis111 = " + lis111);
/**输出:lis111 = [Student{id=null, name='aaa'}, Student{id=null, name='chaochao'}, Student{id=1, name='baierhu'}, Student{id=2, name='zwen'}]*/
}

2、build

    @Test
public void buildTest(){
/**build,个人理解可以用add方法多添加几个东西至Stream*/
String arr[] = {"baierhu", "zhaowenb", "cheng", "2"};
Stream.Builder builder = Stream.builder().add(arr);
builder.build().forEach((a)->{
String aa[]=(String[])a;
System.out.println(Arrays.toString(aa));
});
}
/**输出:[baierhu, zhaowenb, cheng, 2]*/

3.filter  注意:方法二中可以在传入参数的时候带上参数类型,否则会默认将参数类型定为object类型

 @Test
public void buildFilter(){
/**build,个人理解可以用add方法多添加几个东西至Stream*/
String arr[] = {"baierhu", "zhaowenb", "cheng", "2"};
Stream<String> builder = Stream.of(arr);
Predicate<String>pr=new Predicate<String>() {
@Override
public boolean test(String s) {
if(s.length()>4) return true;
return false;
}
};
/**方法一*/
List<String> aa=builder.filter(pr).collect(Collectors.toList());
System.out.println("ob = " + aa);
/**方法二,简单写法*/
List<String> bb=builder.filter((String a)->a.length()>5).collect(Collectors.toList());
System.out.println(bb);
}
/**输出:[baierhu, zhaowenb]*/

4.collect(mapping,joining,groupby)  收集

//创建数据
List<User> listUser = new ArrayList<>();
listUser.add(new User("李白", 20, true));
listUser.add(new User("杜甫", 40, true));
listUser.add(new User("李清照", 18, false));
listUser.add(new User("李商隐", 23, true));
listUser.add(new User("杜牧", 39, true));
listUser.add(new User("苏小妹", 16, false));

这个User就是一个普通的Bean对象,有name(姓名)、age(年龄)、gender(性别)三个属性及对应的set/get方法。

joining方法:

从 joining 方法的定义可以看到,这里重载了3个 joining 方法:无参数,1个参数,3个参数。然后从参数命名上看delimiter-分隔符、prefix-前缀、suffix-后缀大约可以猜出参数的作用了,然后再看注释的参数说明

Returns a {@code Collector} that concatenates the input elements,separated by the specified delimiter, with the specified prefix and suffix, in encounter order.

将指定的值join成字符串

String join1 = listUser.stream().map(User::getName).collect(Collectors.joining());
System.out.println("join后的结果:" + join1); // 输出==》 李白杜甫李清照李商隐杜牧苏小妹

将List中的用户名join成中间用","分隔的字符串

String join2 = listUser.stream().map(User::getName).collect(Collectors.joining(","));
System.out.println("join后的结果:" + join2); // 输出==》李白,杜甫,李清照,李商隐,杜牧,苏小妹

将List中的用户名join成以前缀是"{",后缀是"}",中间用","分隔的字符串

String join3 = listUser.stream().map(User::getName).collect(Collectors.joining(",", "{", "}"));
System.out.println("join后的结果:" + join3); // 输出==》{李白,杜甫,李清照,李商隐,杜牧,苏小妹}
mapping方法的定义如图

方法有2个参数,Function类型的mapper和Collector类型的downstream。通过注释可以看到方法是通过参数mapper函数来处理List中的每一个数据,然后用downstream来将处理后的数据收集起来。举例说明:

取出List中所有人的姓名放到一个新的List中去

// 定义一个入参为User,返回String的函数
Function<User,String> mapper=(user)->{
return user.getName();
};
List<String> userNames = listUser.stream().collect(Collectors.mapping(mapper, Collectors.toList()));

以上代码再简写一下:

List<String> userNames = listUser.stream().collect(Collectors.mapping((user)->{return user.getName();}, Collectors.toList()));

或者:

List<String> userNames = listUser.stream().collect(Collectors.mapping(User::getName, Collectors.toList()));

以上mapping 和joining转载于:https://blog.csdn.net/u012843361/article/details/83090199

group by

转载于:https://blog.csdn.net/u014231523/article/details/102535902

public Product(Long id, Integer num, BigDecimal price, String name, String category) {
this.id = id;
this.num = num;
this.price = price;
this.name = name;
this.category = category;
} Product prod1 = new Product(1L, 1, new BigDecimal("15.5"), "面包", "零食");
Product prod2 = new Product(2L, 2, new BigDecimal("20"), "饼干", "零食");
Product prod3 = new Product(3L, 3, new BigDecimal("30"), "月饼", "零食");
Product prod4 = new Product(4L, 3, new BigDecimal("10"), "青岛啤酒", "啤酒");
Product prod5 = new Product(5L, 10, new BigDecimal("15"), "百威啤酒", "啤酒");
List<Product> prodList = Lists.newArrayList(prod1, prod2, prod3, prod4, prod5);
  • 按照类目分组:

    Map<String, List<Product>> prodMap= prodList.stream().collect(Collectors.groupingBy(Product::getCategory));
    
    //{"啤酒":[{"category":"啤酒","id":4,"name":"青岛啤酒","num":3,"price":10},{"category":"啤酒","id":5,"name":"百威啤酒","num":10,"price":15}],"零食":[{"category":"零食","id":1,"name":"面包","num":1,"price":15.5},{"category":"零食","id":2,"name":"饼干","num":2,"price":20},{"category":"零食","id":3,"name":"月饼","num":3,"price":30}]}
  • 按照几个属性拼接分组:

    Map<String, List<Product>> prodMap = prodList.stream().collect(Collectors.groupingBy(item -> item.getCategory() + "_" + item.getName()));
    
    //{"零食_月饼":[{"category":"零食","id":3,"name":"月饼","num":3,"price":30}],"零食_面包":[{"category":"零食","id":1,"name":"面包","num":1,"price":15.5}],"啤酒_百威啤酒":[{"category":"啤酒","id":5,"name":"百威啤酒","num":10,"price":15}],"啤酒_青岛啤酒":[{"category":"啤酒","id":4,"name":"青岛啤酒","num":3,"price":10}],"零食_饼干":[{"category":"零食","id":2,"name":"饼干","num":2,"price":20}]}
  • 根据不同条件分组
    Map<String, List<Product>> prodMap= prodList.stream().collect(Collectors.groupingBy(item -> {
    if(item.getNum() < 3) {
    return "3";
    }else {
    return "other";
    }
    })); //{"other":[{"category":"零食","id":3,"name":"月饼","num":3,"price":30},{"category":"啤酒","id":4,"name":"青岛啤酒","num":3,"price":10},{"category":"啤酒","id":5,"name":"百威啤酒","num":10,"price":15}],"3":[{"category":"零食","id":1,"name":"面包","num":1,"price":15.5},{"category":"零食","id":2,"name":"饼干","num":2,"price":20}]}

    多级分组
    要实现多级分组,我们可以使用一个由双参数版本的Collectors.groupingBy工厂方法创 建的收集器,它除了普通的分类函数之外,还可以接受collector类型的第二个参数。那么要进 行二级分组的话,我们可以把一个内层groupingBy传递给外层groupingBy,并定义一个为流 中项目分类的二级标准。

    Map<String, Map<String, List<Product>>> prodMap= prodList.stream().collect(Collectors.groupingBy(Product::getCategory, Collectors.groupingBy(item -> {
    if(item.getNum() < 3) {
    return "3";
    }else {
    return "other";
    }
    }))); //{"啤酒":{"other":[{"category":"啤酒","id":4,"name":"青岛啤酒","num":3,"price":10},{"category":"啤酒","id":5,"name":"百威啤酒","num":10,"price":15}]},"零食":{"other":[{"category":"零食","id":3,"name":"月饼","num":3,"price":30}],"3":[{"category":"零食","id":1,"name":"面包","num":1,"price":15.5},{"category":"零食","id":2,"name":"饼干","num":2,"price":20}]}}

    按子组收集数据

  • 求总数

    Map<String, Long> prodMap = prodList.stream().collect(Collectors.groupingBy(Product::getCategory, Collectors.counting()));
    
    //{"啤酒":2,"零食":3}
  • 求和
    Map<String, Integer> prodMap = prodList.stream().collect(Collectors.groupingBy(Product::getCategory, Collectors.summingInt(Product::getNum)));
    
    //{"啤酒":13,"零食":6}
  • 把收集器的结果转换为另一种类型
    Map<String, Product> prodMap = prodList.stream().collect(Collectors.groupingBy(Product::getCategory, Collectors.collectingAndThen(Collectors.maxBy(Comparator.comparingInt(Product::getNum)), Optional::get)));
    
    //{"啤酒":{"category":"啤酒","id":5,"name":"百威啤酒","num":10,"price":15},"零食":{"category":"零食","id":3,"name":"月饼","num":3,"price":30}}
  • 联合其他收集器
    Map<String, Set<String>> prodMap = prodList.stream().collect(Collectors.groupingBy(Product::getCategory, Collectors.mapping(Product::getName, Collectors.toSet())));
    
    //{"啤酒":["青岛啤酒","百威啤酒"],"零食":["面包","饼干","月饼"]}

map

转载于:https://zhangzw.com/posts/20191205.html

// 简单对象
@Accessors(chain = true) // 链式方法
@lombok.Data
class User {
private String id;
private String name;
}

然后有这样一个 List:

List<User> userList = Lists.newArrayList(
new User().setId("A").setName("张三"),
new User().setId("B").setName("李四"),
new User().setId("C").setName("王五")
);

我们希望转成 Map 的格式为:

A-> 张三 
B-> 李四
C-> 王五

过去的做法(循环):
Map<String, String> map = new HashMap<>();
for (User user : userList) {
map.put(user.getId(), user.getName());
}

jdk 1.8

userList.stream().collect(Collectors.toMap(User::getId, User::getName));

当然,如果希望得到 Map 的 value 为对象本身时,可以这样写:

userList.stream().collect(Collectors.toMap(User::getId, t -> t));
或:
userList.stream().collect(Collectors.toMap(User::getId, Function.identity()));

关于 Collectors.toMap 方法

Collectors.toMap 有三个重载方法:

toMap(Function<? super T, ? extends K> keyMapper, Function<? super T, ? extends U> valueMapper);
toMap(Function<? super T, ? extends K> keyMapper, Function<? super T, ? extends U> valueMapper,
BinaryOperator<U> mergeFunction);
toMap(Function<? super T, ? extends K> keyMapper, Function<? super T, ? extends U> valueMapper,
BinaryOperator<U> mergeFunction, Supplier<M> mapSupplier);
参数含义分别是:

keyMapper:Key 的映射函数

valueMapper:Value 的映射函数

mergeFunction:当 Key 冲突时,调用的合并方法

mapSupplier:Map 构造器,在需要返回特定的 Map 时使用

还是用上面的例子,如果 List 中 userId 有相同的,使用上面的写法会抛异常:

List<User> userList = Lists.newArrayList(
new User().setId("A").setName("张三"),
new User().setId("A").setName("李四"), // Key 相同
new User().setId("C").setName("王五")
);
userList.stream().collect(Collectors.toMap(User::getId, User::getName)); // 异常:
java.lang.IllegalStateException: Duplicate key 张三
at java.util.stream.Collectors.lambda$throwingMerger$114(Collectors.java:133)
at java.util.HashMap.merge(HashMap.java:1245)
at java.util.stream.Collectors.lambda$toMap$172(Collectors.java:1320)
at java.util.stream.ReduceOps$3ReducingSink.accept(ReduceOps.java:169)
at java.util.ArrayList$ArrayListSpliterator.forEachRemaining(ArrayList.java:1374)
at java.util.stream.AbstractPipeline.copyInto(AbstractPipeline.java:481)
at java.util.stream.AbstractPipeline.wrapAndCopyInto(AbstractPipeline.java:471)
at java.util.stream.ReduceOps$ReduceOp.evaluateSequential(ReduceOps.java:708)
at java.util.stream.AbstractPipeline.evaluate(AbstractPipeline.java:234)
at java.util.stream.ReferencePipeline.collect(ReferencePipeline.java:499)
at Test.toMap(Test.java:17)
...

这时就需要调用第二个重载方法,传入合并函数,如:

userList.stream().collect(Collectors.toMap(User::getId, User::getName, (n1, n2) -> n1 + n2));

// 输出结果:
A-> 张三李四
C-> 王五

第四个参数(mapSupplier)用于自定义返回 Map 类型,比如我们希望返回的 Map 是根据 Key 排序的,可以使用如下写法:

List<User> userList = Lists.newArrayList(
new User().setId("B").setName("张三"),
new User().setId("A").setName("李四"),
new User().setId("C").setName("王五")
);
userList.stream().collect(
Collectors.toMap(User::getId, User::getName, (n1, n2) -> n1, TreeMap::new)
); // 输出结果:
A-> 李四
B-> 张三
C-> 王五

flatmap

List<Long> listFlatLong = listFlat.stream()
.flatMap(employees -> employees.stream())
.flatMapToLong(employee -> LongStream.of(employee.getId()))
.boxed()
.collect(Collectors.toList());
System.out.println("listFlatLong = " + listFlatLong);

当有双层时,比如List<List<>>或者List<Map<>>比较适合使用这种方式

如果使用的是map方法,返回的是[ ...['y', 'o', 'u', 'r'], ['n', 'a', 'm', 'e']]

如果使用的是flatMap方法,返回的是['y', 'o', 'u', 'r', 'n', 'a', 'm', 'e']

这是map和flatMap的区别

 
												

jdk8-stream-api的更多相关文章

  1. 十分钟学会Java8的lambda表达式和Stream API

    01:前言一直在用JDK8 ,却从未用过Stream,为了对数组或集合进行一些排序.过滤或数据处理,只会写for循环或者foreach,这就是我曾经的一个写照. 刚开始写写是打基础,但写的多了,各种乏 ...

  2. Java8新特性之三:Stream API

    Java8的两个重大改变,一个是Lambda表达式,另一个就是本节要讲的Stream API表达式.Stream 是Java8中处理集合的关键抽象概念,它可以对集合进行非常复杂的查找.过滤.筛选等操作 ...

  3. Java8的lambda表达式和Stream API

    一直在用JDK8 ,却从未用过Stream,为了对数组或集合进行一些排序.过滤或数据处理,只会写for循环或者foreach,这就是我曾经的一个写照. 刚开始写写是打基础,但写的多了,各种乏味,非过来 ...

  4. Java 8 Stream API

    Java 8 Stream API JDK8 中有两大最为重要的改变.第一个是 Lambda 式:另外 Stream API(java.util.stream.*) Stream 是 JDK8 中处理 ...

  5. 试水jdk8 stream

    jdk8出来日子不短了,jdk11都出来了,不过用的最多的不过是1.5罢了. 今年终于鼓起勇气认真对待它,在18年记录下学习stream,画上一个圆. 先看个图 Java8中有两大最为重要的改变.第一 ...

  6. Java8的Stream API使用

    前言 这次想介绍一下Java Stream的API使用,最近在做一个新的项目,然后终于可以从老项目的祖传代码坑里跳出来了.项目用公司自己的框架搭建完成后,我就想着把JDK版本也升级一下吧(之前的项目, ...

  7. JDK8 Stream 数据流效率分析

    JDK8 Stream 数据流效率分析 Stream 是Java SE 8类库中新增的关键抽象,它被定义于 java.util.stream (这个包里有若干流类型: Stream<T> ...

  8. JDK 8 新特性之函数式编程 → Stream API

    开心一刻 今天和朋友们去K歌,看着这群年轻人一个个唱的贼嗨,不禁感慨道:年轻真好啊! 想到自己年轻的时候,那也是拿着麦克风不放的人 现在的我没那激情了,只喜欢坐在角落里,默默的听着他们唱,就连旁边的妹 ...

  9. 【Java 8】Stream API

    转自 Java 8 Stream Java8的两个重大改变,一个是Lambda表达式,另一个就是本节要讲的Stream API表达式.Stream 是Java8中处理集合的关键抽象概念,它可以对集合进 ...

  10. Java 8 Stream API详解--转

    原文地址:http://blog.csdn.net/chszs/article/details/47038607 Java 8 Stream API详解 一.Stream API介绍 Java8引入了 ...

随机推荐

  1. redis安装以及使用

    一.安装 1.源码安装 1.下载redis源码 $ wget http://download.redis.io/releases/redis-4.0.10.tar.gz 2.解压缩 $ tar -zx ...

  2. 欢迎参加3月活动:AWS 在线研讨会与阿里云 RISC-V 应用创新大赛

    3月份我们在帮合作云厂商 Amazon Web Services(AWS) 与阿里云推广2个活动,欢迎感兴趣的园友参加. 活动一:亚马逊云科技在线研讨会:借助 DGL 实现实时欺诈检测 博客园专属报名 ...

  3. F - Fluctuation Limit HDU - 6860

    题目链接:https://vjudge.net/problem/HDU-6860 题意:相邻两天的差值的绝对值不超过K. 思路:该题的关键在于前面的点会影响后面的点,后面的点会影响前面的点,我们要找到 ...

  4. C语言可变参函数分析

    code[class*="language-"], pre[class*="language-"] { color: rgba(51, 51, 51, 1); ...

  5. python那些需要知道的事儿——内存泄漏

    啥,内存也会泄露?漏了咋补?我的内存会不会越漏越小?咋一听到内存泄漏,本喵的脑子蹦出无数想法,所以到底啥是内存泄漏! 一.垃圾回收机制(GC)机制 在理解内存泄漏之前,需要补充一个知识,即GC机制(也 ...

  6. java例题_08 输入特定数字求和(n个a位数递增求和问题)

    1 /*8 [程序 8 输入数字求和] 2 题目:求 s=a+aa+aaa+aaaa+aa...a 的值,其中 a 是一个数字.例如 2+22+222+2222+22222(此时共有 5 个数相加), ...

  7. SFDC 删除操作时:验证或触发后续操作的一般解决方案

    删除操作比较特殊,不能通过Workflow Rule和Process Builder,Validation Rule来Check和相应做后续操作. 目前调查只有两种工具可以监听到删除操作: Apex ...

  8. 第7 章 : 应用编排与管理:Job & DaemonSet

    应用编排与管理:Job & DaemonSet 本节课程要点 Job & CronJobs 基础操作与概念解析: DaemonSet 基础操作与概念解析. Job 需求来源 Job 背 ...

  9. servlet学习(一)

    Tomcat 注:以下资料摘自孙鑫的<sevlet/JSP深入详解>,仅用于个人学习使用. 一.web技术的发展 早期web是静态页面的浏览,使用HTML编写,放入服务器. 1.1浏览器请 ...

  10. ES 分页方案

    ES 中,存在三种常见的分页方案: FROM, SIZE Search-After Scroll 下面将依次比较三种方案之间的 trede-off,并给出相应建议的应用场景. 常见分页,FROM, S ...