正题

题目链接:https://www.luogu.com.cn/problem/P6847


题目大意

\(n\)个点的一棵树上,每个时刻可以割掉一些边,一些节点上有果实表示如果在\(d_i\)时刻这个点恰好不与\(1\)联通,那么就可以获得\(w_i\)的价值。

\(1\leq n,k\leq 10^5\)


解题思路

设\(f_{x,i}\)表示节点\(x\)在时刻\(i\)之前割掉时的最大权值那么相当与在儿子里面选一个最大的\(f_{y,j}(j\leq i)\)合并上来。

这是一个很经典的转移方式,和命运那题一样,直接用线段树合并维护就好了。

时间复杂度\(O(n\log k)\)


code

#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
const ll N=1e5+10;
ll n,m,k,rt[N],fa[N],d[N],w[N];
ll cnt,t[N<<5],lazy[N<<5],ls[N<<5],rs[N<<5];
void Downdata(int x){
if(!lazy[x])return;
if(ls[x])lazy[ls[x]]+=lazy[x],t[ls[x]]+=lazy[x];
if(rs[x])lazy[rs[x]]+=lazy[x],t[rs[x]]+=lazy[x];
lazy[x]=0;return;
}
void Change(ll &x,ll L,ll R,ll pos,ll val,ll z){
if(!x)x=++cnt;
if(L==R){t[x]=val+max(z,t[x]);return;}
ll mid=(L+R)>>1;Downdata(x);
if(pos<=mid)Change(ls[x],L,mid,pos,val,z);
else Change(rs[x],mid+1,R,pos,val,max(z,t[ls[x]]));
t[x]=max(t[ls[x]],t[rs[x]]);
return;
}
ll Merge(ll L,ll R,ll x,ll y,ll mx1,ll mx2){
if(!x||!y){
if(x)lazy[x]+=mx2,t[x]+=mx2;
if(y)lazy[y]+=mx1,t[y]+=mx1;
return x|y;
}
if(L==R){t[x]=max(t[x],mx1)+max(t[y],mx2);return x;}
ll mid=(L+R)>>1;Downdata(x);Downdata(y);
rs[x]=Merge(mid+1,R,rs[x],rs[y],max(mx1,t[ls[x]]),max(mx2,t[ls[y]]));
ls[x]=Merge(L,mid,ls[x],ls[y],mx1,mx2);
t[x]=max(t[ls[x]],t[rs[x]]);
return x;
}
signed main()
{
scanf("%lld%lld%lld",&n,&m,&k);
for(ll i=2;i<=n;i++)
scanf("%lld",&fa[i]);
for(ll i=1;i<=m;i++){
ll x;scanf("%lld",&x);
scanf("%lld%lld",&d[x],&w[x]);
}
for(ll x=n;x>=1;x--){
if(d[x])Change(rt[x],1,k,d[x],w[x],0);
if(fa[x])rt[fa[x]]=Merge(1,k,rt[fa[x]],rt[x],0,0);
}
printf("%lld\n",t[rt[1]]);
return 0;
}

P6847-[CEOI2019]Magic Tree【dp,线段树合并】的更多相关文章

  1. BZOJ_2212_[Poi2011]Tree Rotations_线段树合并

    BZOJ_2212_[Poi2011]Tree Rotations_线段树合并 Description Byteasar the gardener is growing a rare tree cal ...

  2. 【pkuwc2018】 【loj2537】 Minmax DP+线段树合并

    今年年初的时候参加了PKUWC,结果当时这一题想了快$2h$都没有想出来.... 哇我太菜啦.... 昨天突然去搜了下哪里有题,发现$loj$上有于是就去做了下. 结果第一题我5分钟就把所有细节都想好 ...

  3. 【BZOJ2212】[Poi2011]Tree Rotations 线段树合并

    [BZOJ2212][Poi2011]Tree Rotations Description Byteasar the gardener is growing a rare tree called Ro ...

  4. [BZOJ5461][LOJ#2537[PKUWC2018]Minimax(概率DP+线段树合并)

    还是没有弄清楚线段树合并的时间复杂度是怎么保证的,就当是$O(m\log n)$吧. 这题有一个显然的DP,dp[i][j]表示节点i的值为j的概率,转移时维护前缀后缀和,将4项加起来就好了. 这个感 ...

  5. bzoj2212[Poi2011]Tree Rotations [线段树合并]

    题面 bzoj ans = 两子树ans + min(左子在前逆序对数, 右子在前逆序对数) 线段树合并 #include <cstdio> #include <cstdlib> ...

  6. BZOJ2212 [Poi2011]Tree Rotations 线段树合并 逆序对

    原文链接http://www.cnblogs.com/zhouzhendong/p/8079786.html 题目传送门 - BZOJ2212 题意概括 给一棵n(1≤n≤200000个叶子的二叉树, ...

  7. BZOJ.5461.[PKUWC2018]Minimax(DP 线段树合并)

    BZOJ LOJ 令\(f[i][j]\)表示以\(i\)为根的子树,权值\(j\)作为根节点的概率. 设\(i\)的两棵子树分别为\(x,y\),记\(p_a\)表示\(f[x][a]\),\(p_ ...

  8. BZOJ.2212.[POI2011]Tree Rotations(线段树合并)

    题目链接 \(Description\) 给定一棵n个叶子的二叉树,每个叶节点有权值(1<=ai<=n).可以任意的交换两棵子树.问最后顺序遍历树得到的叶子权值序列中,最少的逆序对数是多少 ...

  9. LOJ2537. 「PKUWC2018」Minimax【概率DP+线段树合并】

    LINK 思路 首先暴力\(n^2\)是很好想的,就是把当前节点概率按照权值大小做前缀和和后缀和然后对于每一个值直接在另一个子树里面算出贡献和就可以了,注意乘上选最大的概率是小于当前权值的部分,选最小 ...

随机推荐

  1. SpringBoot整合Quartz定时任务(持久化到数据库)

    背景 最近在做项目,项目中有个需求:需要使用定时任务,这个定时任务需要即时生效.查看Quartz官网之后发现:Quartz提供两种基本作业存储类型: RAMJobStore :RAM也就是内存,默认情 ...

  2. 【springcloud】hystrix面试题

    1 hystrix是什么? Netflix(国外最大的类似于,爱奇艺,优酷)视频网站,五六年前,也是,感觉自己的系统,整个网站,经常出故障,可用性不太高 有时候一些vip会员不能支付,有时候看视频就卡 ...

  3. AAC简介

    AAC共有9种规格,以适应不同的场合的需要: MPEG-2 AAC LC 低复杂度规格(Low Complexity)--比较简单,没有增益控制,但提高了编码效率,在中等码率的编码效率以及音质方面,都 ...

  4. CSS中定位问题

    通过使用 position 属性,我们可以选择 4 种不同类型的定位,这会影响元素框生成的方式. position 属性值的含义: static 元素框正常生成.块级元素生成一个矩形框,作为文档流的一 ...

  5. Hibernate之抓取策略

    时间:2017-1-23 19:08 --区分延迟和立即检索1.立即检索    当执行某行代码时,会马上发出SQL语句进行查询.    例如:get()2.延迟检索    当执行某行代码时,不会马上发 ...

  6. C++字符串【string】和【char []】操作全攻略

    异想之旅:本人博客完全手敲,绝对非搬运,全网不可能有重复:本人无团队,仅为技术爱好者进行分享,所有内容不牵扯广告.本人所有文章发布平台为CSDN.博客园.简书和开源中国,后期可能会有个人博客,除此之外 ...

  7. LVS本地实验环境搭建

    文中实验需要使用以下软件: CentOS的镜像 Virtual Box GNS3 0.实验前的准备工作 0.1.修改yum源 为了方便安装软件,我们设置yum源为公司yum源 1.直接复制公司机器上的 ...

  8. Django的form组件——自定义校验函数

    from django.shortcuts import render,HttpResponse from django import forms from django.core.exception ...

  9. Appium自动化(8) - 可定位的控件属性

    如果你还想从头学起Appium,可以看看这个系列的文章哦! https://www.cnblogs.com/poloyy/category/1693896.html 前言 在前面几篇文章可以看到,一个 ...

  10. VMware NAT模式,虚机访问公网

    1)  确认VMnet8实际获取的IP是否与VMware中配置相同,不同则禁用启用该虚拟网卡 2)确认/etc/sysconfig/network-scripts/ifcfg-ens33 中的配置,G ...