用f[i][j]表示完成前i个任务,在A机器上加工j小时时B机器上最少要工作多小时,转移就分为三种,即$f[i][j]=min(f[i-1][j-t1],f[i-1][j]+t2,f[i-t3]+t3)$,然后这个东西可以用类似于背包的方式优化到1维(注意要从大到小枚举)

 1 #include<bits/stdc++.h>
2 using namespace std;
3 int n,a,b,c,s,ans,f[30005];
4 int main(){
5 scanf("%d",&n);
6 for(int i=1;i<=n;i++){
7 scanf("%d%d%d",&a,&b,&c);
8 if (!a)a=1e5;
9 if (!b)b=1e5;
10 if (!c)c=1e5;
11 for(int j=5*n;j>=0;j--){
12 f[j]+=b;
13 if (j>=a)f[j]=min(f[j],f[j-a]);
14 if (j>=c)f[j]=min(f[j],f[j-c]+c);
15 }
16 }
17 ans=f[0];
18 for(int i=1;i<=5*n;i++)ans=min(ans,max(i,f[i]));
19 printf("%d",ans);
20 }

[bzoj1222]产品加工的更多相关文章

  1. 【BZOJ1222】[HNOI2001]产品加工 DP

    [BZOJ1222][HNOI2001]产品加工 Description 某加工厂有A.B两台机器,来加工的产品可以由其中任何一台机器完成,或者两台机器共同完成.由于受到机器性能和产品特性的限制,不同 ...

  2. BZOJ1222[HNOI2001]产品加工——DP

    题目描述 某加工厂有A.B两台机器,来加工的产品可以由其中任何一台机器完成,或者两台机器共同完成.由于受到机器性能和产品特性的限制,不同的机器加工同一产品所需的时间会不同,若同时由两台机器共同进行加工 ...

  3. BZOJ1222[HNOI 2001]产品加工

    题面描述 某加工厂有A.B两台机器,来加工的产品可以由其中任何一台机器完成,或者两台机器共同完成.由于受到机器性能和产品特性的限制,不同的机器加工同一产品所需的时间会不同,若同时由两台机器共同进行加工 ...

  4. 【bzoj1222】[HNOI2001]产品加工 背包dp

    题目描述 某加工厂有A.B两台机器,来加工的产品可以由其中任何一台机器完成,或者两台机器共同完成.由于受到机器性能和产品特性的限制,不同的机器加工同一产品所需的时间会不同,若同时由两台机器共同进行加工 ...

  5. BZOJ1222: [HNOI2001]产品加工(诡异背包dp)

    Time Limit: 15 Sec  Memory Limit: 162 MBSubmit: 907  Solved: 587[Submit][Status][Discuss] Descriptio ...

  6. bzoj1222: [HNOI2001]产品加工--DP

    DP神题orz dp[i]表示机器1工作i小时,机器2工作dp[i]小时 那么对于每个任务: 选1:dp[i]=dp[i-a]; 选2:dp[i]=dp[i]+b; 选1+2:dp[i]=dp[i-c ...

  7. bzoj1222: [HNOI2001]产品加工

    注意时间都是 <= 5的.. #include<cstdio> #include<cstring> #include<cstdlib> #include< ...

  8. BZOJ1222 [HNOI2001]产品加工 - 动态规划- 背包

    题解 怎么看都不像是个背包,直到我看了题解→_→, 第一次碰到这么奇怪的背包= = 定一个滚动数组$F_i$, $i$表示机器$a$用了$i$的时间, $F_i$表示机器$b$用了$F_i$的时间, ...

  9. bzoj 1222: [HNOI2001]产品加工 dp

    1222: [HNOI2001]产品加工 Time Limit: 15 Sec  Memory Limit: 162 MBSubmit: 381  Solved: 218[Submit][Status ...

随机推荐

  1. SpringBoot如何实现定时任务

    写在前面 SpringBoot创建定时任务的方式很简单,主要有两种方式:一.基于注解的方式(@Scheduled)二.数据库动态配置.实际开发中,第一种需要在代码中写死表达式,如果修改起来,又得重启会 ...

  2. FFT 的一些技巧

    三次变两次 FFT 我们发现: \[(F(x)+iG(x))^2=F(x)^2-G(x)^2+2iF(x)G(x) \] 也就是说,我们把 \(F(x)\) 作为实部,\(G(x)\) 作为虚部,那么 ...

  3. 创建HTML文档

    目录 创建HTML文档 构筑基本的文档结构 DOCTYPE元素 DOCTYPE元素 代码清单1 使用DOCTYPE元素 html元素 html元素 代码清单2 使用html元素 head元素 head ...

  4. SpringMVC、Spring、MyBatis整合(IDEA版)

    1 环境准备 1.1 软件架构 JDK 1.8 Spring 4.x Mybatis 3.x Maven 3.x MySQL 5.7 1.2 创建数据库 创建数据库,数据库名ssm-demo,字符集u ...

  5. 【UE4 C++】 启动 / 关闭外部exe、开启虚拟键盘

    启动/关闭外部exe 引擎自带 FPlatformProcess::CreateProc() FPlatformProcess::TerminateProc() windows api ShellEx ...

  6. 安装pytorch后import torch显示no module named 'torch'

    问题描述:在pycharm终端里通过pip指令安装pytorch,显示成功安装但是python程序和终端都无法使用pytorch,显示no module named 'torch'. 起因:电脑里有多 ...

  7. 记一次关于pdf 下载需求变更到 pdf 在线预览

    背景: 之前的需求是根据接口中提供的Blob数据实现PDF下载,已实现代码如下: 1 const url = window.URL.createObjectURL(newBlob([response. ...

  8. 矩阵n次幂的计算

    1.归纳法 两大数学归纳法 题目一 2.递推关系 题目一 题目二 3.方阵 题目一 4.矩阵对角化(重点) 题目一 题目二 题目三 题目四 5.矩阵性质(综合) 题目一 题目二 对于副对角线: 题目三

  9. SpringCloud微服务实战——搭建企业级开发框架(十):使用Nacos分布式配置中心

    随着业务的发展.微服务架构的升级,服务的数量.程序的配置日益增多(各种微服务.各种服务器地址.各种参数),传统的配置文件方式和数据库的方式已无法满足开发人员对配置管理的要求: 安全性:配置跟随源代码保 ...

  10. 重学STM32---(九)之CAN通信(一)

    目录 1.CAN 是什么 2.CAN 特点 3.错误状态的种类 4.总线拓扑 5.CAN 协议 1.CAN 是什么   CAN 是 Controller Area Network的缩写(以下称为 CA ...