有以下引理:

不存在两个合法环,他们存在公共边。

证明:公共边边权为 \(z\),第一个环除去公共边为 \(x\),第二个环除去公共边为 \(y\)。

则有 \(x \oplus z = 1\) \(y \oplus z = 1\),则存在另外一个简单环的权值为 \(x\oplus y = 0\),所以该图不合法。

我们知道一颗树上是没有环的。

所以一颗树不影响非树边的加入。

我们考虑先在这些边按照加边顺序里做一颗生成树出来。

这些边一定可以存在。

那么我们考虑那些非树边。

我们在加入一条非树合法边时,在 \((u,v)\) 这条路径上打上一个\(tag\)。

判断一条非树边是否合法时,我们可以查询 \((u,v)\) 是否有标记,并查询 \((u,v)\) 的异或和。

CF1555F Good Graph的更多相关文章

  1. [开发笔记] Graph Databases on developing

    TimeWall is a graph databases github It be used to apply mathematic model and social network with gr ...

  2. Introduction to graph theory 图论/脑网络基础

    Source: Connected Brain Figure above: Bullmore E, Sporns O. Complex brain networks: graph theoretica ...

  3. POJ 2125 Destroying the Graph 二分图最小点权覆盖

    Destroying The Graph Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 8198   Accepted: 2 ...

  4. [LeetCode] Number of Connected Components in an Undirected Graph 无向图中的连通区域的个数

    Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nodes), ...

  5. [LeetCode] Graph Valid Tree 图验证树

    Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nodes), ...

  6. [LeetCode] Clone Graph 无向图的复制

    Clone an undirected graph. Each node in the graph contains a label and a list of its neighbors. OJ's ...

  7. 讲座:Influence maximization on big social graph

    Influence maximization on big social graph Fanju PPT链接: social influence booming of online social ne ...

  8. zabbix利用api批量添加item,并且批量配置添加graph

    关于zabbix的API见,zabbixAPI 1item批量添加 我是根据我这边的具体情况来做的,本来想在模板里面添加item,但是看了看API不支持,只是支持在host里面添加,所以我先在一个ho ...

  9. Theano Graph Structure

    Graph Structure Graph Definition theano's symbolic mathematical computation, which is composed of: A ...

随机推荐

  1. OSI模型与TCP/IP模型

    OSI模型与TCP/IP模型 OSI参考模型: ​ ---开放式系统互联参考模型 OSI/RM ISO ---国际标准化组织 --1979 应用层 ---- 通过应用进程间的交互来完成特定网络应用 表 ...

  2. docsify + Gitee Pages服务搭建开源项目网站

    前言 base-admin从开源至今,已经收获了2k Stat,而我们一直都没有一份像样的在线文档,最近写了一个博客园随笔备份Java脚本,将博客随笔备份到本地,格式是md文档格式,就有意去找将md文 ...

  3. 分布式表示(Distributed Representation)

    NLP模型笔记 - 分布式表示 ziuno 2020-03-08 19:52:50 410 收藏 2 分类专栏: NLP 模型 笔记 文章标签: nlp 最后发布:2020-03-08 19:52:5 ...

  4. AIApe问答机器人Scrum Meeting 4.29

    Scrum Meeting 4 日期:2021年4月29日 会议主要内容概述:汇报两日工作,讨论任务优先级. 一.进度情况 组员 负责 两日内已完成的工作 后两日计划完成的工作 工作中遇到的困难 李明 ...

  5. 热身训练1 Sequence

    http://acm.hdu.edu.cn/showproblem.php?pid=6 分析: 这道题,全都是1e9,所以我们很容易想到"矩阵快速幂". 假如说我们没有后面那个&q ...

  6. 关于STM32 (Cortex-M3) 中NVIC的分析

    一.STM32 (Cortex-M3) 中的优先级概念 STM32(Cortex-M3)中有两个优先级的概念:抢占式优先级和响应优先级,也把响应优先级称作"亚优先级"或" ...

  7. Shell脚本学习笔记之(自动填充函数模板)

    其实,vii 就是写的一个脚本,跟 vi 没半毛钱关系,只不过借用一下这个名字而已.那这个脚本长什么样呢?look: 下面来详细的解析上面的代码,来看第1行: #!/bin/bash 这是Shell脚 ...

  8. MyBatis源码分析(八):设计模式

    Mybatis中用到的设计模式 1. 建造者(Builder)模式: 表示一个类的构建与类的表示分离,使得同样的构建过程可以创建不同的表示.建造者模式是一步一步创建一个复杂的对象,他只允许用户只通过指 ...

  9. Codeforces Round #744 (Div. 3) G题题解

    淦,最后一道题没写出来,...还是我太菜了,不过这个题确实比较有趣. G. Minimal Coverage 简化题意:就是你处在坐标轴的0点上,给你一个序列\(a_i\),每次你可以选择向左走\(a ...

  10. hdu 1709 The Balance(母函数)

    题意: 有一个天平.有N个砝码.重量分别是A1...AN. 问重量[1..S]中有多少种重量是无法利用这个天平和这些砝码称出来的. S是N个砝码的重量总和. 思路: 对于每一个砝码来说,有三种:不放, ...