有以下引理:

不存在两个合法环,他们存在公共边。

证明:公共边边权为 \(z\),第一个环除去公共边为 \(x\),第二个环除去公共边为 \(y\)。

则有 \(x \oplus z = 1\) \(y \oplus z = 1\),则存在另外一个简单环的权值为 \(x\oplus y = 0\),所以该图不合法。

我们知道一颗树上是没有环的。

所以一颗树不影响非树边的加入。

我们考虑先在这些边按照加边顺序里做一颗生成树出来。

这些边一定可以存在。

那么我们考虑那些非树边。

我们在加入一条非树合法边时,在 \((u,v)\) 这条路径上打上一个\(tag\)。

判断一条非树边是否合法时,我们可以查询 \((u,v)\) 是否有标记,并查询 \((u,v)\) 的异或和。

CF1555F Good Graph的更多相关文章

  1. [开发笔记] Graph Databases on developing

    TimeWall is a graph databases github It be used to apply mathematic model and social network with gr ...

  2. Introduction to graph theory 图论/脑网络基础

    Source: Connected Brain Figure above: Bullmore E, Sporns O. Complex brain networks: graph theoretica ...

  3. POJ 2125 Destroying the Graph 二分图最小点权覆盖

    Destroying The Graph Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 8198   Accepted: 2 ...

  4. [LeetCode] Number of Connected Components in an Undirected Graph 无向图中的连通区域的个数

    Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nodes), ...

  5. [LeetCode] Graph Valid Tree 图验证树

    Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nodes), ...

  6. [LeetCode] Clone Graph 无向图的复制

    Clone an undirected graph. Each node in the graph contains a label and a list of its neighbors. OJ's ...

  7. 讲座:Influence maximization on big social graph

    Influence maximization on big social graph Fanju PPT链接: social influence booming of online social ne ...

  8. zabbix利用api批量添加item,并且批量配置添加graph

    关于zabbix的API见,zabbixAPI 1item批量添加 我是根据我这边的具体情况来做的,本来想在模板里面添加item,但是看了看API不支持,只是支持在host里面添加,所以我先在一个ho ...

  9. Theano Graph Structure

    Graph Structure Graph Definition theano's symbolic mathematical computation, which is composed of: A ...

随机推荐

  1. print spooler LPF 打印机漏洞

    打印机漏洞 该漏洞可以通过创建打印机驱动和端口,实现任意文件写入,用于提权或者写入后门. 打印机调用流程:client通过RPC调用server的spoolsv.exe,spoolsv.exe是sys ...

  2. css如何简单设置文字溢出盒子显示省略号

    1.单行文本溢出显示省略号单行文本溢出显示省略号,必须满足三个条件:(1)先强制一行内显示文本white-space:nowrap;(默认 normal自动换行)(2)超出的部分隐藏overflow: ...

  3. 【UE4 C++】Print、Delay、ConsoleCommand

    基于UKismetSystemLibrary PrintString /** * Prints a string to the log, and optionally, to the screen * ...

  4. Java:volatile笔记

    Java:volatile笔记 本笔记是根据bilibili上 尚硅谷 的课程 Java大厂面试题第二季 而做的笔记 1. volatile 和 JMM 内存模型的可见性 JUC 下的三个包 java ...

  5. 【Linux命令063】Linux非常简单常用的入门命令

    Linux常用命令 这是一篇我在公众号上发布的文章,还算较为受欢迎. 博客园这边荒废好长时间了,主要是最近一年经常撰写的文章都是Linux相关的入门文章. 不知道是否能通过博客园的首页审核. 1.cd ...

  6. Spring 5 MVC 中的 Router Function 使用

    Spring 5 发行已经好几年了,里面提出了好几个新点子.其中一个就是 RouterFunction,这是个什么东西呢? Spring框架给我们提供了两种http端点暴露方式来隐藏servlet原理 ...

  7. Noip模拟11 2021.7.11

    T1 math 其实看看题面,看看给的那机组数据即可看出规律了(然而当时并没有,只是发现模数的循环节,存了个vector,接下来就暴力了) 有个柿子: 其实就是裴蜀定理. 然后想一想的话就是 那么只要 ...

  8. reactnative实现qq聊天消息气泡拖拽消失效果

    前言(可跳过) 我在开发自己的APP时遇到了一个类似于qq聊天消息气泡拖拽消息的需求,因为在网上没有找到相关的组件,所以自己动手实现了一下 需求:对聊天消息气泡拖拽到一定长度松开时该气泡会消失(可自行 ...

  9. 连续子序列的最大和 牛客网 剑指Offer

    连续子序列的最大和 牛客网 剑指Offer 题目描述 HZ偶尔会拿些专业问题来忽悠那些非计算机专业的同学.今天测试组开完会后,他又发话了:在古老的一维模式识别中,常常需要计算连续子向量的最大和,当向量 ...

  10. 恶意代码分析实战四:IDA Pro神器的使用

    目录 恶意代码分析实战四:IDA Pro神器的使用 实验: 题目1:利用IDA Pro分析dll的入口点并显示地址 空格切换文本视图: 带地址显示图形界面 题目2:IDA Pro导入表窗口 题目3:交 ...