P1447能量采集
P1447能量采集
- 定义:(i,j)表示处于(i,j)的植物的贡献
我们发现,点(i,j)与(0,0)的连线所过整点的数目为\(\gcd(i,j)\)
发现要是想记录每个点的答案并不好算。那么怎么好算呢?
我们来找一找同一直线上的所有点答案的和的关系。先不考虑答案只考虑个数。发现,寻找一个点及其倍数的个数的和更加好算。而且,因为有n和m的限制,那么向下取整的答案一定就是其本身。考虑容斥,我们只需要从大往小更新答案并将答案乘2减1加起来即可。
那么对于一个点及其倍数的答案怎么计算呢?
假设n小于m,那么对于一个小于n的数i,显然它的倍数的个数就是\((n/i)*(m/i)\),这样一来我们只需要考虑小于n的所有数的个数就能够统计n*m的所有数的答案了。至于为什么\((m-n) * m\)这一块不用考虑,是因为这里不会再有数容斥它们了,直接统计就行。
所以,答案即为
\]
其中\(\displaystyle num_i=(n/i)*(m/i)-\sum_{i=2}^{n/i}num_i\)
在代码中一个倒序循环即可,时间复杂度线性。
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cctype>
#include<cstring>
#define int long long
using namespace std;
inline int read(){
int x=0,w=0;char c=getchar();
while(!isdigit(c))w|=c=='-',c=getchar();
while(isdigit(c))x=(x<<3)+(x<<1)+(c^48),c=getchar();
return w?-x:x;
}
const int maxn=1e5+10;
int ans[maxn];
signed main(){
int n=read(),m=read(),Ans=0;
if(n>m)swap(n,m);
for(int i=n;i;i--){
ans[i]=(n/i)*(m/i);
for(int j=2;j<=n/i;j++)ans[i]-=ans[i*j];
Ans+=(ans[i]*(i*2-1));
}
printf("%lld",Ans);
return 0;
}
P1447能量采集的更多相关文章
- 【洛谷】P1447 能量采集
此题虽为紫,但其实在水 能量采集 题目描述 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一 ...
- P1447 [NOI2010]能量采集
题目描述 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种得非常整齐,一共 ...
- 洛谷P1447 - [NOI2010]能量采集
Portal Description 给出\(n,m(n,m\leq10^5),\)计算\[ \sum_{i=1}^n \sum_{j=1}^m (2gcd(i,j)-1)\] Solution 简单 ...
- BZOJ 2005: [Noi2010]能量采集
2005: [Noi2010]能量采集 Time Limit: 10 Sec Memory Limit: 552 MBSubmit: 3312 Solved: 1971[Submit][Statu ...
- noi2010 能量采集
2005: [Noi2010]能量采集 Time Limit: 10 Sec Memory Limit: 552 MB Submit: 3068 Solved: 1820 [Submit][Sta ...
- 2005: [Noi2010]能量采集 - BZOJ
Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种得 ...
- bzoj2005: [Noi2010]能量采集
lsj师兄的题解 一个点(x, y)的能量损失为 (gcd(x, y) - 1) * 2 + 1 = gcd(x, y) * 2 - 1. 设g(i)为 gcd(x, y) = i ( 1 < ...
- 【BZOJ 2005】[Noi2010]能量采集
Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种得 ...
- 【BZOJ 2005】[Noi2010]能量采集 (容斥原理| 欧拉筛+ 分块)
能量采集 Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋 ...
随机推荐
- java面试必知必会——排序
二.排序 时间复杂度分析 排序算法 平均时间复杂度 最好 最坏 空间复杂度 稳定性 冒泡 O(n²) O(n) O(n²) O(1) 稳定 选择 O(n²) O(n²) O(n²) O(1) 不稳定 ...
- Lombok——一款Java构建工具,“懒人”必备!!(idea版)
一.简介 Lombok 是一种 Jav 构建工具,可用来帮助开发人员消除 Java 的冗长代码,尤其是对于简单的 Java 对象(POJO).它是通过注解实现这一目的. 二.使用 1.在idea中安装 ...
- DOS命令行(1)——Windows目录与文件应用操作
cd 1.使用cd快速切换到指定盘符与目录中 命令格式1:cd [/d] [<盘符>][<路径>] 或 chdir [/d] [<盘符>][<路径>] ...
- es6 快速入门 系列 —— promise
其他章节请看: es6 快速入门 系列 Promise Promise 是一种异步编程的选择 初步认识Promise 用 Promise 来实现这样一个功能:发送一个 ajax,返回后输出 json ...
- Redisson 分布式锁源码 01:可重入锁加锁
前言 相信小伙伴都是使用分布式服务,那一定绕不开分布式服务中数据并发更新问题! 单系统很容易想到 Java 的各种锁,像 synchronize.ReentrantLock 等等等,那分布式系统如何处 ...
- 我是怎么写 Git Commit message 的?
目录 作用 用的什么规范? type scope subject body footer 参考文章 用的什么辅助工具? 作用 编写格式化的 commit message 能够大大提高代码的维护效率. ...
- 2、mysql编译安装
2.1前言: 此文档介绍的是cmake编译安装的方式: 二进制的安装方式在linux运维_集群_01中有详细的安装说明(已经编译完成,进行初始操作即可) 初始化操作时需要对编译好的mysql进行一下备 ...
- Maven安装、配置及基础
简介: Maven是Apache公司的开源项目,是项目构建工具,用来管理依赖. Maven的优点: 同样的代码实现相同的功能,Maven项目没有Jar包,项目大小更小. maven的优点如何实现: 没 ...
- SpringCloud:feign默认jackson解析'yyyy-MM-ddTHH:mm:ssZ'时间格式报错
Feign默认的使用jackson解析,所以时间传值时会报错,时间格式错误 解决办法: 修改feign解析方式为fastjson方式: @Configuration public class CxfC ...
- Java实验项目二——小学生考试系统(简单四则运算)
Program:设计实现一个小学生数学考试系统,完成随机出题(简单的四则运算),学生答题,自动判分的功能. Description:代码如下: 1 /* 2 * Description:面向考试系统建 ...