DL4J实战之五:矩阵操作基本功
欢迎访问我的GitHub
https://github.com/zq2599/blog_demos
内容:所有原创文章分类汇总及配套源码,涉及Java、Docker、Kubernetes、DevOPS等;
本篇概览
- 作为《DL4J实战》系列的第五篇,在前面对深度学习有一定的了解后,本篇会暂停深度学习相关的操作,转为基本功练习:矩阵操作,即INDArray接口的基本用法
- INDArray的类图如下,由于BaseNDArray是个抽象类,因此在实际使用中,咱们用的都是NDArray的实例:

之所以用一篇文章来学习矩阵操作,是因为后面的实战过程中处处都有它,处处离不开它,若不熟练就会寸步难行;
本篇涉及的API较多,因此先做好归类,后面的代码按照分类来写会清晰一些,一共分为五类:矩阵属性、创建操作、读操作、写操作、矩阵计算,接下来用思维导图列出每一类的常用API
矩阵属性:

- 创建操作:

- 读操作:

- 写操作:

- 矩阵计算:

源码下载
- 本篇实战中的完整源码可在GitHub下载到,地址和链接信息如下表所示(https://github.com/zq2599/blog_demos):
| 名称 | 链接 | 备注 |
|---|---|---|
| 项目主页 | https://github.com/zq2599/blog_demos | 该项目在GitHub上的主页 |
| git仓库地址(https) | https://github.com/zq2599/blog_demos.git | 该项目源码的仓库地址,https协议 |
| git仓库地址(ssh) | git@github.com:zq2599/blog_demos.git | 该项目源码的仓库地址,ssh协议 |
- 这个git项目中有多个文件夹,《DL4J实战》系列的源码在dl4j-tutorials文件夹下,如下图红框所示:

- dl4j-tutorials文件夹下有多个子工程,本次实战代码在ndarray-experience目录下,如下图红框:

创建工程
- 在父工程dl4j-tutorials下新建名为ndarray-experience的子工程,其pom.xml如下:
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<parent>
<artifactId>dlfj-tutorials</artifactId>
<groupId>com.bolingcavalry</groupId>
<version>1.0-SNAPSHOT</version>
</parent>
<modelVersion>4.0.0</modelVersion>
<artifactId>ndarray-experience</artifactId>
<dependencies>
<dependency>
<groupId>org.nd4j</groupId>
<!--注意要用nd4j-native-platform,否则容器启动时报错:no jnind4jcpu in java.library.path-->
<artifactId>${nd4j.backend}</artifactId>
</dependency>
<dependency>
<groupId>ch.qos.logback</groupId>
<artifactId>logback-classic</artifactId>
</dependency>
</dependencies>
</project>
- 接下来的代码都写在ndarray-experience工程中
最基本的方法
先列出两个最基本的方法,后面学习时会频繁用到它们:
rand:秩,维数,例如2行3列的二维矩阵,rand方法返回值等于2
shape:矩阵每个维度的大小,如2行3列的二维矩阵,shape方法返回值等于[2, 3]
准备一个静态方法,可以将INDArray实例的详情打印出来,用的就是rand和shape方法:
private static void disp(String type, INDArray indArray) {
StringBuilder stringBuilder = new StringBuilder("*****************************************************\n");
stringBuilder.append(type)
.append("\n维度 : ").append(indArray.rank())
.append("\n形状 : ").append(Arrays.toString(indArray.shape()))
.append("\n完整矩阵 : \n").append(indArray);
System.out.println(stringBuilder);
}
创建矩阵
- 全零矩阵:zeros
// 创建2行3列的全零矩阵
INDArray indArray0 = Nd4j.zeros(2, 3);
disp("全零矩阵", indArray0);
- 执行结果
全零矩阵
维度 : 2
形状 : [2, 3]
完整矩阵 :
[[ 0, 0, 0],
[ 0, 0, 0]]
- 全1矩阵:ones
// 创建2行3列的全一矩阵
INDArray indArray1 = Nd4j.ones(2, 3);
disp("全一矩阵", indArray1);
- 执行结果
全一矩阵
维度 : 2
形状 : [2, 3]
完整矩阵 :
[[ 1.0000, 1.0000, 1.0000],
[ 1.0000, 1.0000, 1.0000]]
- 全是指定值的矩阵:valueArrayOf
// 创建2行3列的全是指定值的矩阵
INDArray indArray2 = Nd4j.valueArrayOf(new int[] {2, 3}, 888);
disp("全是指定值(888)的矩阵", indArray2);
- 执行结果
全是指定值(888)的矩阵
维度 : 2
形状 : [2, 3]
完整矩阵 :
[[ 888.0000, 888.0000, 888.0000],
[ 888.0000, 888.0000, 888.0000]]
- rand:随机矩阵(0到1之间的随机数)
// 创建2行3列的随机矩阵
INDArray indArray2 = Nd4j.rand(2, 3);
disp("随机矩阵", indArray2);
- 执行结果
随机矩阵
维度 : 2
形状 : [2, 3]
完整矩阵 :
[[ 0.7236, 0.5159, 0.1908],
[ 0.9458, 0.4413, 0.4173]]
- 随机高斯分布的矩阵(平均值为0,标准差为1):randn
// 创建2行3列的随机高斯分布矩阵
INDArray indArray3 = Nd4j.randn(2, 3);
disp("随机高斯分布矩阵", indArray3);
- 执行结果
随机高斯分布矩阵
维度 : 2
形状 : [2, 3]
完整矩阵 :
[[ -0.4287, -0.5790, 0.5004],
[ -0.5122, 1.0551, -0.1998]]
- 等差数列:linspace
// 创建等差数列,
// 从1到6、长度为10的等差数列
INDArray indArray4 = Nd4j.linspace(1,6, 10);
disp("等差数列", indArray4);
- 执行结果
等差数列
维度 : 1
形状 : [10]
完整矩阵 :
[ 1.0000, 1.5556, 2.1111, 2.6667, 3.2222, 3.7778, 4.3333, 4.8889, 5.4444, 6.0000]
- 根据数组创建矩阵:create(float[] data, int[] shape)
// 根据数组创建2行3列的矩阵
INDArray indArray6 = Nd4j.create(new float[] {1, 2, 3, 4, 5, 6}, new int[] {2,3});
disp("根据数组创建矩阵", indArray6);
- 执行结果
根据数组创建矩阵
维度 : 2
形状 : [2, 3]
完整矩阵 :
[[ 1.0000, 2.0000, 3.0000],
[ 4.0000, 5.0000, 6.0000]]
- 三维矩阵
// 三维矩阵
INDArray indArray7 = Nd4j.valueArrayOf(new int[] {2, 2, 3}, 888);
disp("三维矩阵", indArray7);
```shell
三维矩阵
维度 : 3
形状 : [2, 2, 3]
完整矩阵 :
[[[ 888.0000, 888.0000, 888.0000],
[ 888.0000, 888.0000, 888.0000]],
[[ 888.0000, 888.0000, 888.0000],
[ 888.0000, 888.0000, 888.0000]]]
- 创建正方形二维矩阵,并且对角线上的元素值都是1.0:
// 创建3行3列的二维矩阵,对角线值为1.0
INDArray indArray10 = Nd4j.eye(3);
disp("3*3矩阵,且对角线都是1.0", indArray10);
- 执行结果
3*3矩阵,且对角线都是1.0
维度 : 2
形状 : [3, 3]
完整矩阵 :
[[ 1.0000, 0, 0],
[ 0, 1.0000, 0],
[ 0, 0, 1.0000]]
读操作
- 接下来试试读取相关的操作,回顾前面用数组创建的2行3列的矩阵,内容如下:
[[ 1.0000, 2.0000, 3.0000],
[ 4.0000, 5.0000, 6.0000]]
- 读取指定位置:
System.out.println("读取第一行第一列位置的值 : " + indArray6.getDouble(1,1));
- 执行结果
读取第一行第一列位置的值 : 5.0
- 指定行:
System.out.println("读取第一行 : " + indArray6.getRow(1));
- 执行结果
读取第一行 : [ 4.0000, 5.0000, 6.0000]
- 指定列:
System.out.println("读取第二列 : " + indArray6.getColumn(2));
- 执行结果
读取第二列 : [ 3.0000, 6.0000]
- 指定多列:
System.out.println("读取第二、三列 : " + indArray6.getColumns(1,2));
- 执行结果
读取第二、三列 : [[ 2.0000, 3.0000],
[ 5.0000, 6.0000]]
写操作
- 接下来试试读取相关的操作,回顾前面用数组创建的2行3列的矩阵,内容如下:
[[ 1.0000, 2.0000, 3.0000],
[ 4.0000, 5.0000, 6.0000]]
- 修改指定位置,查看了源码后发现,put方法内容实际上是在调用putScalar方法:
indArray6.put(1,1, 123);
indArray6.putScalar(0,0, 456);
disp("a. 修改后", indArray6);
- 执行结果
a. 修改后
维度 : 2
形状 : [2, 3]
完整矩阵 :
[[ 456.0000, 2.0000, 3.0000],
[ 4.0000, 123.0000, 6.0000]]
- 修改整行:
// 准备一维数组
INDArray row1 = Nd4j.create(new float[] {9,8,7});
// 用一维数组替换矩阵的整行
indArray6.putRow(1, row1);
disp("b. 修改后", indArray6);
- 执行结果
b. 修改后
维度 : 2
形状 : [2, 3]
完整矩阵 :
[[ 456.0000, 2.0000, 3.0000],
[ 9.0000, 8.0000, 7.0000]]
矩阵计算
- 矩阵计算,咱们从最基本的四则运算开始
- 加减乘除,入参是一个标量,会与矩阵中的所有元素做计算
// 准备好原始数据,2行3列矩阵
indArray6 = Nd4j.create(new float[] {1, 2, 3, 4, 5, 6}, new int[] {2,3});
// 加法
disp("加法", indArray6.add(1));
// 减法
disp("减法", indArray6.sub(1));
// 乘法
disp("乘法", indArray6.mul(2));
// 除法
disp("除法", indArray6.div(2));
- 执行结果
加法
维度 : 2
形状 : [2, 3]
完整矩阵 :
[[ 2.0000, 3.0000, 4.0000],
[ 5.0000, 6.0000, 7.0000]]
*****************************************************
减法
维度 : 2
形状 : [2, 3]
完整矩阵 :
[[ 0, 1.0000, 2.0000],
[ 3.0000, 4.0000, 5.0000]]
*****************************************************
乘法
维度 : 2
形状 : [2, 3]
完整矩阵 :
[[ 2.0000, 4.0000, 6.0000],
[ 8.0000, 10.0000, 12.0000]]
*****************************************************
除法
维度 : 2
形状 : [2, 3]
完整矩阵 :
[[ 0.5000, 1.0000, 1.5000],
[ 2.0000, 2.5000, 3.0000]]
- 前面的add方法,执行完毕后会生成一个新的NDArray实例,不影响原对象,但如果调用的是addi,就会修改原对象的内容:
INDArray indArray8 = Nd4j.create(new float[] {1, 2, 3, 4, 5, 6}, new int[] {2,3});
disp("替换前", indArray8);
indArray8.addi(1);
disp("替换后", indArray8);
- 执行结果
替换前
维度 : 2
形状 : [2, 3]
完整矩阵 :
[[ 1.0000, 2.0000, 3.0000],
[ 4.0000, 5.0000, 6.0000]]
*****************************************************
替换后
维度 : 2
形状 : [2, 3]
完整矩阵 :
[[ 2.0000, 3.0000, 4.0000],
[ 5.0000, 6.0000, 7.0000]]
- 展开:Nd4j.toFlattened,2行3列的二维矩阵展开后成了一维的
disp("展开", Nd4j.toFlattened(indArray6));
- 执行结果
展开
维度 : 1
形状 : [6]
完整矩阵 :
[ 1.0000, 2.0000, 3.0000, 4.0000, 5.0000, 6.0000]
- 转换:reshape,相当于使用原有数据,但是换一个shape入参
disp("转换", indArray6.reshape(3,2));
- 执行结果
转换
维度 : 2
形状 : [3, 2]
完整矩阵 :
[[ 1.0000, 2.0000],
[ 3.0000, 4.0000],
[ 5.0000, 6.0000]]
- 提取正方形矩阵的对角线:diag,得到的结果是一维的
// 创建一个人3行3列的正方形矩阵
INDArray indArray9 = Nd4j.create(new float[] {1, 2, 3, 4, 5, 6, 7, 8, 9}, new int[] {3,3});
disp("3*3矩阵", indArray9);
// 提取正方形矩阵的对角线
disp("3*3矩阵的对角线", Nd4j.diag(indArray9));
- 执行结果如下图,diag方法得到了源对象的对角线

- 基于源矩阵形状创建新矩阵,且值都相通(入参值),然后用此新矩阵减去源矩阵:rsub
// 初始化一个2行3列的矩阵
INDArray indArray11 = Nd4j.create(new float[] {1, 2, 3, 4, 5, 6}, new int[] {2,3});
// 参考indArray12的结构创建一个2行3列的矩阵,该矩阵的所有元素的值都等于10(入参),
// 然后,用该矩阵减去indArray11,结果作为rsub方法的返回值返回
INDArray indArray12 = indArray11.rsub(10);
disp("rsub方法", indArray12);
- 执行结果如下,可见所有值都是10减去源矩阵对应位置的值:
rsub方法
维度 : 2
形状 : [2, 3]
完整矩阵 :
[[ 9.0000, 8.0000, 7.0000],
[ 6.0000, 5.0000, 4.0000]]
- 两个矩阵相加:add,两个形状相通的矩阵,同样位置的值相加:
INDArray indArray13 = Nd4j.create(new float[] {1, 2, 3, 4, 5, 6}, new int[] {2,3});
INDArray indArray14 = Nd4j.create(new float[] {1, 1, 1, 1, 1, 1}, new int[] {2,3});
disp("矩阵相加", indArray13.add(indArray14));
- 执行结果
矩阵相加
维度 : 2
形状 : [2, 3]
完整矩阵 :
[[ 2.0000, 3.0000, 4.0000],
[ 5.0000, 6.0000, 7.0000]]
- 叉乘:mmul,2行3列乘以3行2列,
INDArray indArray13 = Nd4j.create(new float[] {1, 2, 3, 4, 5, 6}, new int[] {2,3});
INDArray indArray15 = Nd4j.create(new float[] {1, 2, 3, 4, 5, 6}, new int[] {3,2});
disp("2行3列", indArray13);
disp("3行2列", indArray15);
disp("2行3列矩阵与3行2列矩阵的叉乘", indArray13.mmul(indArray15));
- 执行结果,可见,2行3列矩阵的每一行的元素,都和3行2列矩阵每一列的元素做两两相乘再相加,一共四个值,所以结果就是2行2列的矩阵:

- 矩阵所有元素值累加:sum
INDArray indArray16 = Nd4j.create(new float[] {1, 2, 3, 4, 5, 6}, new int[] {2,3});
// 总和
double sum = indArray16.sum().getDouble();
System.out.println("矩阵元素累加和 : " + sum);
- 执行结果
矩阵元素累加和 : 21.0
- 转置操作(不改变源对象):transpose
INDArray indArray16 = Nd4j.create(new float[] {1, 2, 3, 4, 5, 6}, new int[] {2,3});
disp("转置前", indArray16);
disp("转置操作", indArray16.transpose());
disp("transpose操作后的原值(不变)", indArray16);
- 执行结果,可见2行3列转置后变成了3行2列,但是生成了新对象,而源对象未改变
转置前
维度 : 2
形状 : [2, 3]
完整矩阵 :
[[ 1.0000, 2.0000, 3.0000],
[ 4.0000, 5.0000, 6.0000]]
*****************************************************
转置操作
维度 : 2
形状 : [3, 2]
完整矩阵 :
[[ 1.0000, 4.0000],
[ 2.0000, 5.0000],
[ 3.0000, 6.0000]]
*****************************************************
transpose操作后的原值(不变)
维度 : 2
形状 : [2, 3]
完整矩阵 :
[[ 1.0000, 2.0000, 3.0000],
[ 4.0000, 5.0000, 6.0000]]
- 转置操作(源对象被改变):transposei
INDArray indArray16 = Nd4j.create(new float[] {1, 2, 3, 4, 5, 6}, new int[] {2,3});
disp("转置前", indArray16);
disp("转置操作", indArray16.transposei());
disp("transposei操作后的原值(已变)", indArray16);
- 执行结果
转置前
维度 : 2
形状 : [2, 3]
完整矩阵 :
[[ 1.0000, 2.0000, 3.0000],
[ 4.0000, 5.0000, 6.0000]]
*****************************************************
转置操作
维度 : 2
形状 : [3, 2]
完整矩阵 :
[[ 1.0000, 4.0000],
[ 2.0000, 5.0000],
[ 3.0000, 6.0000]]
*****************************************************
transposei操作后的原值(已变)
维度 : 2
形状 : [3, 2]
完整矩阵 :
[[ 1.0000, 4.0000],
[ 2.0000, 5.0000],
[ 3.0000, 6.0000]]
- 横向拼接:hstack,要求两个矩阵行数相等
// 2行3列
INDArray indArray17 = Nd4j.create(new float[] {1, 2, 3, 4, 5, 6}, new int[] {2,3});
// 2行1列
INDArray indArray18 = Nd4j.create(new float[] {1, 2}, new int[] {2,1});
disp("源矩阵", indArray17);
disp("拼接上的矩阵", indArray18);
// 2行3列的矩阵,横向拼接一列后,变成了2行4列
disp("横向拼接(每一行都增加一列)", Nd4j.hstack(indArray17, indArray18));
- 执行结果如下图,可见是把indArray18 横着拼到indArray17 的右侧

- 纵向拼接:vstack,要求两个矩阵列数相等
// 2行3列
INDArray indArray19 = Nd4j.create(new float[] {1, 2, 3, 4, 5, 6}, new int[] {2,3});
// 1行3列
INDArray indArray20 = Nd4j.create(new float[] {1, 2, 3}, new int[] {1,3});
disp("源矩阵", indArray17);
disp("拼接上的矩阵", indArray18);
// 2行3列的矩阵,纵向拼接一行,变成了3行3列
disp("纵向拼接(增加一行)", Nd4j.vstack(indArray19, indArray20));
- 执行结果如下图,可见是把indArray20放在了indArray19的底部

- 以上就是矩阵操作的常用API了,希望能给您一些参考,在深度学习的开发中更熟练的操作数据
你不孤单,欣宸原创一路相伴
欢迎关注公众号:程序员欣宸
微信搜索「程序员欣宸」,我是欣宸,期待与您一同畅游Java世界...
https://github.com/zq2599/blog_demos
DL4J实战之五:矩阵操作基本功的更多相关文章
- DL4J实战之二:鸢尾花分类
欢迎访问我的GitHub https://github.com/zq2599/blog_demos 内容:所有原创文章分类汇总及配套源码,涉及Java.Docker.Kubernetes.DevOPS ...
- DL4J实战之三:经典卷积实例(LeNet-5)
欢迎访问我的GitHub https://github.com/zq2599/blog_demos 内容:所有原创文章分类汇总及配套源码,涉及Java.Docker.Kubernetes.DevOPS ...
- DL4J实战之六:图形化展示训练过程
欢迎访问我的GitHub 这里分类和汇总了欣宸的全部原创(含配套源码):https://github.com/zq2599/blog_demos 本篇概览 本篇是<DL4J实战>系列的第六 ...
- kubebuilder实战之五:operator编码
欢迎访问我的GitHub https://github.com/zq2599/blog_demos 内容:所有原创文章分类汇总及配套源码,涉及Java.Docker.Kubernetes.DevOPS ...
- DL4J实战之一:准备
欢迎访问我的GitHub https://github.com/zq2599/blog_demos 内容:所有原创文章分类汇总及配套源码,涉及Java.Docker.Kubernetes.DevOPS ...
- DL4J实战之四:经典卷积实例(GPU版本)
欢迎访问我的GitHub https://github.com/zq2599/blog_demos 内容:所有原创文章分类汇总及配套源码,涉及Java.Docker.Kubernetes.DevOPS ...
- Linear regression with one variable算法实例讲解(绘制图像,cost_Function ,Gradient Desent, 拟合曲线, 轮廓图绘制)_矩阵操作
%测试数据 'ex1data1.txt', 第一列为 population of City in 10,000s, 第二列为 Profit in $10,000s 1 6.1101,17.592 5. ...
- iOS开发UI篇—Quartz2D使用(矩阵操作)
iOS开发UI篇—Quartz2D使用(矩阵操作) 一.关于矩阵操作 1.画一个四边形 通过设置两个端点(长和宽)来完成一个四边形的绘制. 代码: - (void)drawRect:(CGRect)r ...
- 【iOS】Quartz2D矩阵操作
前面画基本图形时,画四边形是由几条直线拼接成的,现在有更简便的方法. 一.关于矩阵操作 1.画一个四边形 通过设置两个端点(长和宽)来完成一个四边形的绘制. 代码: - (void)drawRect: ...
随机推荐
- Blazor+Dapr+K8s微服务之基于WSL安装K8s集群并部署微服务
前面文章已经演示过,将我们的示例微服务程序DaprTest1部署到k8s上并运行.当时用的k8s是Docker for desktop 自带的k8s,只要在Docker for deskto ...
- Shell中常用的语句
exit 完全中断脚本的执行 break 中断脚本的循环,但是会执行循环外的语句 continue 跳出本次循环,进行下一次循环 进一步了解三者的区别,有如下实验: 执行该脚本: 脚本正常运行情况: ...
- Vue 2.0 与 Vue 3.0 响应式原理比较
Vue 2.0 的响应式是基于Object.defineProperty实现的 当你把一个普通的 JavaScript 对象传入 Vue 实例作为 data 选项,Vue 将遍历此对象所有的 prop ...
- client-go实战之四:dynamicClient
欢迎访问我的GitHub https://github.com/zq2599/blog_demos 内容:所有原创文章分类汇总及配套源码,涉及Java.Docker.Kubernetes.DevOPS ...
- javascript(2)运算符
### js运算符 1.运算符 1.typeof 获取当前变量类型 运算符(特殊) 2.= 赋值运算符 3.== 简要比较运算符(忽略变量的类型) 4.=== 标准比较运算符(严格变量的类型.判断是否 ...
- k8s架构与组件详解
没有那么多花里胡哨,直接进行一个K8s架构与组件的学习. 一.K8s架构 k8s系统在设计是遵循c-s架构的,也就是我们图中apiserver与其余组件的交互.在生产中通常会有多个Master以实现K ...
- 【数据库上】第五讲 E-R模型扩展知识
第五讲 E-R模型扩展知识 一.E-R模型设计主意问题 1.1 用实体还是实体集 案例:学院对象的表示 应将各个学院看做实体集,还是实体? 方法一:将各个学院看作一个实体集 如果各学院具有不同属性特征 ...
- Linux内核下包过滤框架——iptables&netfilter
iptables & netfilter 1.简介 netfilter/iptables(下文中简称为iptables)组成Linux内核下的包过滤防火墙,完成封包过滤.封包重定向和网络地址转 ...
- rootfs -根文件系统制作
目录 目录 目录 概述 概念 根文件系统是什么 根文件系统中有什么 根文件系统的形式 Busybox 简介 什么是 linuxrc VFS 简介 Busybox 工具 Busybox 目录结构 Men ...
- Mybatis log plugin插件破解修复版 MyBatis Log Plugin License Authorization Failed
github地址 - https://github.com/Link-Kou/intellij-mybaitslog