传送门

只会爆搜系列

  • 关于「本质不同的子序列个数」:限定长度无限制(就是这题)

    无限制的柿子是(令 \(dp[i]\) 为以 \(i\) 为结尾的不同子序列个数) \(dp[i] = \sum dp[j]+1\),代表在所有子序列末尾后面接上这个字母,且它自身也是一个子序列

然后这题还可以填上 \(m\) 个数,并要求最大化方案数

有个我没想到的贪心,每次填方案数最少的那个字母

因为根据上面的转移,无论这一次选哪个字母,它们的dp值都是一样的

于是发现我们填的数其实是 \(k\) 的一个排列

然后 \(m\) 很大而 \(k\) 只有 \(100\),考虑矩阵快速幂

每 \(k\) 次下来整体的转移是固定的,可以建出系数矩阵

剩下不足 \(k\) 的地方暴力处理就好了

Code:
#include <bits/stdc++.h>
using namespace std;
#define INF 0x3f3f3f3f3f3f3f
#define N 1000010
#define ll long long
#define ld long double
#define ull unsigned long long
#define fir first
#define sec second
#define make make_pair
#define reg register int
//#define int long long char buf[1<<21], *p1=buf, *p2=buf;
#define getchar() (p1==p2&&(p2=(p1=buf)+fread(buf, 1, 1<<21, stdin)), p1==p2?EOF:*p1++)
inline ll read() {
ll ans=0, f=1; char c=getchar();
while (!isdigit(c)) {if (c=='-') f=-f; c=getchar();}
while (isdigit(c)) {ans=(ans<<3)+(ans<<1)+(c^48); c=getchar();}
return ans*f;
} int n, k; ll m;
int a[N];
const ll mod=1e9+7;
int mod2=1e9+7;
//inline void md(ll& a, ll b) {a+=b; a=a>=mod?a-mod:a;}
inline void md(ll& a, ll b) {a+=b; a=a>=mod?a-mod:a;}
inline void md2(int& a, int b) {a+=b; a=a>=mod2?a-mod2:a;}
const ull base=131;
unordered_map<ull, bool> mp, mp2; namespace task1{
void dfs(int u, ull dat) {
dat=dat*base+a[u];
mp[dat]=1;
for (int i=u+1; i<=n; ++i) {
dfs(i, dat);
}
}
void solve() {
for (int i=1; i<=n; ++i) dfs(i, 0);
cout<<mp.size()%mod<<endl;
exit(0);
}
} namespace task2{
ull sta[N]; int top; unsigned ans;
void dfs(int u, unordered_map<ull, bool> tmp) {
//cout<<"dfs "<<u<<endl;
if (u>m) {ans=max(ans, tmp.size()); return ;}
top=0; ull tem;
for (int j=1; j<=k; ++j) {
//cout<<"j: "<<j<<endl;
unordered_map<ull, bool> tp2=tmp;
for (auto it:tmp) {
tem=it.fir;
tp2[tem*base+j]=1;
}
tp2[j]=1;
dfs(u+1, tp2);
}
}
void solve() {
for (int i=1; i<=n; ++i) task1::dfs(i, 0);
dfs(1, mp);
cout<<ans<<endl;
}
} namespace task3{
ll dp[110]; ld dp2[110];
int sta[110], top;
void solve() {
ll sum; ld sum2;
for (int i=1; i<=n; ++i) {
sum=0; sum2=0;
for (int j=1; j<=k; ++j)
md(sum, dp[j]), sum2+=1.0*dp[j];
dp[a[i]]=sum, dp2[a[i]]=sum2+1.0;
md(dp[a[i]], 1);
}
for (int i=1,pos=0; i<=m; ++i,pos%=k) {
if (top==k) {
sum=0; sum2=0;
for (int j=1; j<=k; ++j)
md(sum, dp[j]), sum2+=dp[j];
dp[sta[pos]]=sum; dp2[sta[pos]]=sum2+1;
md(dp[sta[pos++]], 1);
}
else {
//ll minn=INF;
ld minn=1e1000l; int mini=0; sum=0; sum2=0;
for (int j=1; j<=k; ++j) {
if (dp2[j]<minn) minn=dp2[j], mini=j;
md(sum, dp[j]), sum2+=dp2[j];
}
dp[mini]=sum; dp2[mini]+=sum2;
md(dp[mini], 1);
sta[top++]=mini;
}
}
sum=0;
for (int i=1; i<=k; ++i) md(sum, dp[i]);
printf("%lld\n", sum);
exit(0);
}
} namespace task{
int dp[110], sum3[110], vec[110];
queue<int> q;
struct matrix{
int a[110][110];
int n, m;
matrix() {memset(a, 0, sizeof(a));}
matrix(int x, int y):n(x),m(y) {memset(a, 0, sizeof(a));}
void resize(int a, int b) {n=a; m=b;}
void put() {for (int i=1; i<=n; ++i) {for (int j=1; j<=m; ++j) cout<<a[i][j]<<' '; cout<<endl;}}
inline int* operator [] (int t) {return a[t];}
inline matrix operator * (matrix& b) {
matrix ans(n, b.m);
for (reg i=1; i<=n; ++i)
for (reg k=1; k<=m; ++k)
for (reg j=1; j<=b.m; ++j)
md2(ans[i][j], 1ll*a[i][k]*b[k][j]%mod);
return ans;
}
}mat, tem;
matrix qpow(matrix &a, ll b) {
matrix ans=a; --b;
while (b) {
if (b&1) ans=ans*a;
a=a*a; b>>=1;
}
return ans;
}
void solve() {
int sum=0, lst=0;
mat.resize(1, k+1); tem.resize(k+1, k+1);
int u;
for (reg i=1; i<=n; ++i) {
//cout<<"u: "<<u.fir<<' '<<u.sec<<endl;
lst=dp[a[i]];
dp[a[i]]=sum;
md2(dp[a[i]], 1);
sum=(sum-lst+sum+1)%mod2;
sum=(sum+mod)%mod2;
vec[a[i]]=i;
}
//for (int i=1; i<=k; ++i) md(sum, dp[i]);
pair<int, int> s[110];
for (reg i=1; i<=k; ++i) s[i]=make(vec[i], i);
sort(s+1, s+k+1);
for (reg i=1; i<=k; ++i) q.push(s[i].sec);
int lim=m%k;
//cout<<"lim: "<<lim<<endl;
for (reg i=1,mini; i<=lim; ++i) {
u=q.front(); q.pop();
lst=dp[u];
dp[u]=sum;
md2(dp[u], 1);
sum=(sum-lst+sum+1)%mod2;
sum=(sum+mod2)%mod2;
q.push(u);
}
for (reg i=1; i<=k+1; ++i) tem[i][i]=1;
//cout<<"---tem(ini t)---"<<endl;
//tem.put(); cout<<endl;
for (reg i=1; i<=k; ++i) mat[1][i]=dp[i]; mat[1][k+1]=1;
for (reg i=1; i<=k; ++i) {
u=q.front(); q.pop();
memset(sum3, 0, sizeof(sum3));
for (reg j=1; j<=k; ++j)
for (reg h=1; h<=k+1; ++h)
md2(sum3[h], tem[j][h]);
memcpy(tem[u], sum3, sizeof(sum3));
++tem[u][k+1];
q.push(u);
}
for (reg i=1; i<=k+1; ++i)
for (reg j=i+1; j<=k+1; ++j)
swap(tem[i][j], tem[j][i]);
#if 0
cout<<"---mat---"<<endl;
mat.put(); cout<<endl;
cout<<"---tem---"<<endl;
tem.put(); cout<<endl;
cout<<"qpow: "<<m/k<<endl;
#endif
tem=qpow(tem, m/k);
mat=mat*tem;
ll ans=0;
//cout<<"---ans---"<<endl;
//for (int i=1; i<=k; ++i) cout<<mat[1][i]<<' '; cout<<endl;
for (reg i=1; i<=k; ++i) md(ans, mat[1][i]);
printf("%lld\n", ans);
exit(0);
}
} signed main()
{
n=read(); m=read(); k=read();
for (int i=1; i<=n; ++i) a[i]=read();
if (!m) task3::solve();
else task::solve();
//task3::solve();
//task::solve(); return 0;
}

题解 Sequence的更多相关文章

  1. 【CF486E】LIS of Sequence题解

    [CF486E]LIS of Sequence题解 题目链接 题意: 给你一个长度为n的序列a1,a2,...,an,你需要把这n个元素分成三类:1,2,3: 1:所有的最长上升子序列都不包含这个元素 ...

  2. 题解——CodeForces 438D The Child and Sequence

    题面 D. The Child and Sequence time limit per test 4 seconds memory limit per test 256 megabytes input ...

  3. HDU1560 DNA sequence(IDA*)题解

    DNA sequence Time Limit: 15000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) To ...

  4. 【题解】Cut the Sequence(贪心区间覆盖)

    [题解]Cut the Sequence(贪心区间覆盖) POJ - 3017 题意: 给定一大堆线段,问用这些线段覆盖一个连续区间1-x的最小使用线段的数量. 题解 考虑一个这样的贪心: 先按照左端 ...

  5. Ural 1248 Sequence Sum 题解

    目录 Ural 1248 Sequence Sum 题解 题意 题解 程序 Ural 1248 Sequence Sum 题解 题意 给定\(n\)个用科学计数法表示的实数\((10^{-100}\s ...

  6. 题解【Codeforces438D】The Child and Sequence

    题目描述 At the children's day, the child came to Picks's house, and messed his house up. Picks was angr ...

  7. CF3D Least Cost Bracket Sequence 题解

    题目 This is yet another problem on regular bracket sequences. A bracket sequence is called regular, i ...

  8. Numerical Sequence (Hard vision) 题解

    The only difference between the easy and the hard versions is the maximum value of \(k\). You are gi ...

  9. [LeetCode]题解(python):060-Permutation Sequence

    题目来源 https://leetcode.com/problems/permutation-sequence/ The set [1,2,3,…,n] contains a total of n! ...

随机推荐

  1. CG-CTF 签到

    int __cdecl sub_401340(unsigned __int8 *a1) { int v2; // [esp+18h] [ebp-D0h] int v3; // [esp+1Ch] [e ...

  2. Windows环境mysql自动备份

    1.编写bat文件备份mysql 1 rem ******MySQL backup start****** 2 @echo off 3 4 ::删除一周前的备份数据 5 forfiles /p &qu ...

  3. 2021/2/5 关于new的一个教训

    千万不要在类构造函数的初始化里new任何东西,这会导致析构函数delete一个野指针!构造函数一定要把所有的指针初始化为nullptr! 以下代码会报错(堆内存崩溃): Integer::Intege ...

  4. 7.Java数组

    一.数组概念(最简单的数据结构) 数组是相同类型数据的有序集合. 数组描述的是相同类型的若干个数据,按照一定的先后次序排列组合而成. 其中每一个数据称作一个数组元素,每个数组元素可以通过一个下标来访问 ...

  5. PYTHON 得到光标处的句柄

    import win32api import win32gui import time if __name__ == '__main__': while True: point = win32api. ...

  6. Java中lombok @Builder注解使用详解(十八)

    Lombok大家都知道,在使用POJO过程中,它给我们带来了很多便利,省下大量写get.set方法.构造器.equal.toString方法的时间.除此之外,通过@Builder注解,lombok还可 ...

  7. selenium 鼠标,键盘操作

    1.鼠标操作 导包:from selenium.webdriver.common.action_chains import ActionChains 1.context_click()        ...

  8. django2.1实现全文检索(最详细)+遇到的坑+jieba分词

    首先django实现全文检索在这里使用的是haystack,环境是django2.1+win10 64+py3.7 1: 安装包: pip install dgango-haystack #安装全局检 ...

  9. 图解java多线程设计模式之一一synchronized实例方法体

    synchronized实例方法体和synchronized代码块 synchronied void method(){ ....... } 这个等同于下面将方法体用synchronized(this ...

  10. Linux下如何查看定位当前正在运行软件的配置文件

    netstat命令 用于显示与IP.TCP.UDP和ICMP协议相关的统计数据,一般用于检验本机各端口的网络连接情况 netstat -lntup 说明: l:listening n:num t:tc ...