题面传送门

题意:

给出 \(n,p\),求有多少 \(n\) 位数 \(X=a_1a_2a_3\dots a_n\) 满足:

  1. 该 \(n\) 位数不含前导零
  2. \(a_i \leq a_{i+1}\)
  3. \(X\) 为 \(p\) 的倍数。

答案对 \(998244353\) 取模。

\(1 \leq n \leq 10^{18}\),\(1 \leq p \leq 500\)。

CSP 之前做的了,隔了好久才把题解补了。。。

本题的突破口在于怎样处理 \(a_i \leq a_{i+1}\) 这个条件。

我们不妨进行一个转化:每次加一个全是 \(1\) 的后缀,最多可以加 \(9\) 次,这样就能保证得到的数一定满足条件 2。

又由于 \(X\) 不能含前导零,所以我们加的后缀中必须有一个是长度 \(n\) 的后缀。

于是我们有了优秀的 \(n^8\) 的做法,可以拿到 10 分的好成绩。

但仔细观察就可以发现,每个后缀 \(111...11\) 对 \(p\) 取模的余数呈周期分部。

例如当 \(p=12\) 的时候,各后缀模 \(p\) 的余数分别为:\(1,11,9,7,11,9,7,11,...\)

不难看出除了 \(1\) 以外每三个一循环。

有了这个发现,我们就可以将这 \(n\) 个后缀分为三类:

  1. 还没进循环节
  2. 在完整的循环节中
  3. 在最后多出的部分中

证明可用扩展欧拉定理。

记 \(cnt_m\) 为模 \(p\) 余 \(m\) 的后缀数。分类讨论可以在 \(\mathcal O(p)\) 的时间内求出 \(cnt\)。

接下来就可以 \(dp\) 了。\(dp[i][j][k]\) 表示选择了余数为 \(0\) 到 \(i\) 的后缀共 \(j\),它们的和模 \(p\) 余 \(k\) 的方案数。

转移的时候枚举选择多少个余数为 \(i\) 的后缀,记为 \(s\)。

由于可以重复选择,这一部分的方案数可以用隔板法求,\(\dbinom{cnt_i+s-1}{s}\)。

最后别忘了我们必须选择长度为 \(n\) 的后缀,所以答案为 \(\sum\limits_{i=0}^8dp[p-1][i][(p-pn)\mod m]\),其中 \(pn\) 为长度为 \(n\) 的后缀对 \(p\) 取模的结果。

别忘了特判 \(p=1\),卡了我很久。。。。。。

综上,这是一道非常不错的综合题。

#include <bits/stdc++.h>
using namespace std;
#define fi first
#define se second
#define fz(i,a,b) for(int i=a;i<=b;i++)
#define fd(i,a,b) for(int i=a;i>=b;i--)
#define ffe(it,v) for(__typeof(v.begin()) it=v.begin();it!=v.end();it++)
#define fill0(a) memset(a,0,sizeof(a))
#define fill1(a) memset(a,-1,sizeof(a))
#define fillbig(a) memset(a,63,sizeof(a))
#define pb push_back
#define mp make_pair
#define int long long
typedef pair<int,int> pii;
typedef long long ll;
const ll MOD=999911659;
ll n;
int p,a[505];
int vis[505];
ll cnt[505];
ll dp[505][10][505];
inline ll qpow(ll x,ll e){
ll ans=1;
while(e){
if(e&1) ans=ans*x%MOD;
x=x*x%MOD;e>>=1;
}
return ans;
}
ll inv[505];
inline ll getc(ll x,ll y){
ll ans=1;
for(int i=x;i>=x-y+1;i--) ans=ans*(i%MOD)%MOD;
for(int i=1;i<=y;i++) ans=ans*inv[i]%MOD;
return ans;
}
inline void inc(ll &x,ll y){
x+=y;if(x>=MOD) x-=MOD;
}
signed main(){
scanf("%lld%lld",&n,&p);
for(int i=1;i<=10;i++) inv[i]=qpow(i,MOD-2);
int cur=1;vis[cur]=1%p;
int len1,len2;a[1]=1%p;
for(int i=2;i<=1000;i++){
cur=(cur*10+1)%p;a[i]=cur;
if(vis[cur]){
len1=vis[cur]-1;len2=i-vis[cur];
break;
}
vis[cur]=i;
}
if(n<=len1) for(int i=1;i<=n;i++) cnt[a[i]]++;
else{
ll cyc=(n-len1)/len2;
ll rem=(n-len1)%len2;
for(int i=1;i<=len1;i++) cnt[a[i]]++;
for(int i=len1+1;i<=len1+len2;i++) cnt[a[i]]+=cyc;
for(int i=len1+1;i<=len1+rem;i++) cnt[a[i]]++;
}
for(int i=0;i<9;i++){
dp[0][i][0]=getc(cnt[0]+i-1,i)%MOD;
}
for(int i=0;i<p-1;i++) for(int j=0;j<9;j++) for(int k=0;k<p;k++){
for(int l=0;l+j<9;l++){
inc(dp[i+1][l+j][(k+l*(i+1))%p],dp[i][j][k]*getc(cnt[i+1]+l-1,l)%MOD);
}
}
int gn;
if(n<=len1) gn=a[n];
else if((n-len1)%len2==0) gn=a[len1+len2];
else gn=a[len1+(n-len1)%len2];
ll ans=0;
for(int i=0;i<9;i++) inc(ans,dp[p-1][i][(p-gn)%p]);
printf("%lld\n",ans);
return 0;
}
/*
1000000000 499
1000000000000000000 1
2 1
*/

洛谷 P2481 [SDOI2010]代码拍卖会(背包+隔板法)的更多相关文章

  1. 洛谷 P2481 [SDOI2010]代码拍卖会

    洛谷 这大概是我真正意义上的第一道黑题吧! 自己想出了一个大概,状态转移方程打错了一点点,最后还是得看题解. 一句话题意:求出有多少个\(n\)位的数,满足各个位置上的数字从左到右不下降,且被\(p\ ...

  2. luogu P2481 [SDOI2010]代码拍卖会

    luogu 题目中的那个大数一定是若干个1+若干个2+若干个3...+若干个9组成的,显然可以转化成9个\(\underbrace {111...1}_{a_i个1}(0\le a_1\le a_2\ ...

  3. SDOI2010代码拍卖会 (计数类DP)

    P2481 SDOI2010代码拍卖会 $ solution: $ 这道题调了好久好久,久到都要放弃了.洛谷的第五个点是真的强,简简单单一个1,调了快4个小时! 这道题第一眼怎么都是数位DP,奈何数据 ...

  4. 洛谷 P2014 选课(树形背包)

    洛谷 P2014 选课(树形背包) 思路 题面:洛谷 P2014 如题这种有依赖性的任务可以用一棵树表示,因为一个儿子要访问到就必须先访问到父亲.然后,本来本题所有树是森林(没有共同祖先),但是题中的 ...

  5. 洛谷P4525 【模板】自适应辛普森法1与2

    洛谷P4525 [模板]自适应辛普森法1 与P4526[模板]自适应辛普森法2 P4525洛谷传送门 P4525题目描述 计算积分 结果保留至小数点后6位. 数据保证计算过程中分母不为0且积分能够收敛 ...

  6. BZOJ1925或洛谷2467 [SDOI2010]地精部落

    BZOJ原题链接 洛谷原题链接 先讲下关于波动数列的\(3\)个性质. 性质\(1\):对于数列中的每一对\(i\)和\(i + 1\),若它们不相邻,那么交换这两个数形成的依旧是一个波动数列. 性质 ...

  7. 洛谷 P4389: 付公主的背包

    题目传送门:洛谷 P4389. 题意简述: 有 \(n\) 个物品,每个物品都有无限多,第 \(i\) 个物品的体积为 \(v_i\)(\(v_i\le m\)). 问用这些物品恰好装满容量为 \(i ...

  8. 洛谷 P2467 [SDOI2010]地精部落

    洛谷 我讲的应该没有这个[https://www.luogu.org/blog/user55639/solution-p2467]清楚. 贴个代码算了: #include <bits/stdc+ ...

  9. 洛谷P2468 [SDOI2010]粟粟的书架

    来了来了,随便拽一道题写题解[大雾] 最近发现自己基础奇差于是开始复习之前学过的东西,正好主席树我几乎完全没学会,然后打开洛谷试炼场… 发现了这么一道二合一的题. 这道题其实分成两个部分,前50%是一 ...

随机推荐

  1. (课内)信安数基RSA-level3-5

    emmmm感觉其实自己对这个的理解完全不够,原理只能写出这么个东西(悲) 代码完全是 攻击方式中(1)(2)内容的实现. lambda是一种可以理解为匿名函数的写法:写在这里看起来很酷炫(bushi) ...

  2. Beta阶段性总结

    1.题士开发总结 2.反思 2.1 Issue管理 从0522敲定各个功能的API后,团队成员及时沟通,积极开发,但由于开发过程没能有效体现在issue上(如未能及时在issue上形成记录,功能开发完 ...

  3. oo第一单元学习总结

    写在开头: 第一次接触面向对象思想和java语言,在学习以及完成作业的过程经历了一个比较痛苦的过程, 虽然在每次写作业时总是会有一些小小的抱怨,虽然写出的代码还是很差, 但是看到自己有所进步,还是感觉 ...

  4. Noip模拟4(忁靈霁) 2021.6.6

    T1 随(Rand) 由杠哥大定理可得,这题目前不可做,先跳走啦,咕咕.... T2 单(single) 考场上,简单看一眼就看出是个高斯消元,然后..... 板子没记住!!! 然而这不是最糟糕的.. ...

  5. Envoy实现.NET架构的网关(三)代理GRPC

    什么是GRPC gRPC是一种与语言无关的高性能远程过程调用 (RPC) 框架.gRPC 的主要好处是: 现代.高性能.轻量级的 RPC 框架. 契约优先的 API 开发,默认使用协议缓冲区,与语言无 ...

  6. 实验5:开源控制器实践——POX

    一.实验目的 1.能够理解 POX 控制器的工作原理: 2.通过验证POX的forwarding.hub和forwarding.l2_learning模块,初步掌握POX控制器的使用方法: 3.能够运 ...

  7. 当src获取不到图片,onerror可指定一张默认的图片

    <img src="img/789.png" onerror="javascript:this.src='img/123.png';" alt=" ...

  8. oracle 归档日志:db_recovery_file_dest、log_archive_dest和log_archive_dest_n的区别和使用

    概念: db_recovery_file_dest:默认的指定闪回恢复区路径 log_archive_dest:指定归档文件存放的路径,所有归档路径必须是本地的,默认为''.log_archive_d ...

  9. 记一次线上环境 ES 主分片为分配故障

    故障前提 ElasticSearch 版本:5.2 集群节点数:5 索引主分片数:5 索引分片副本数:1 线上环境ES存储的数据量很大,当天由于存储故障,导致一时间 5个节点的 ES 集群,同时有两个 ...

  10. 为什么IDEA不推荐你使用@Autowired ?

    @Autowired注解相信每个Spring开发者都不陌生了!在DD的Spring Boot基础教程和Spring Cloud基础教程中也都经常会出现. 但是当我们使用IDEA写代码的时候,经常会发现 ...