Codeforces 题面传送门 & 洛谷题面传送门

考虑 DFS 一遍遍历每个连通块。

当我们遍历到一个点 \(x\) 时,我们就建立一个虚点 \((2^n-1-x)'\) 表示我们要访问 \(2^n-1-x\) 的所有子集表示的点。

而当我们遍历到某个虚点 \(x'\),我们就枚举每一位 \(b\),如果 \(x\) 的第 \(b\) 位是 \(1\) 则继续遍历 \((x-2^b)'\)。如果其对应的实点存在,即 \(\exists i,s.t.a_i=x\),那么我们就继续遍历实点 \(x\),如果一个点被访问过就直接 return

显然这样能够遍历到连通块中每个点,而每个点最多被遍历一次,因此总复杂度 \(\mathcal O(2^n)\)。

题虽 trivial,但是这个建虚点的思想还是很值得研究的。

using namespace fastio;
const int MAXN=1<<23;
int n,m,vis[MAXN+5],has[MAXN+5];
void dfs(int x){
if(vis[x]) return;vis[x]=1;
if(x<(1<<n)) dfs((1<<n)+(((1<<n)-1)^x));
else{
if(has[x-(1<<n)]) dfs(x-(1<<n));
for(int j=0;j<n;j++) if(x>>j&1) dfs(x^(1<<j));
}
}
int main(){
read(n);read(m);int res=0;
for(int i=1,x;i<=m;i++) read(x),has[x]=1;
for(int i=0;i<(1<<n);i++) if(has[i]&&!vis[i]) res++,dfs(i);
printf("%d\n",res);
return 0;
}

Codeforces 986C - AND Graph(dfs)的更多相关文章

  1. codeforces 711D Directed Roads(DFS)

    题目链接:http://codeforces.com/problemset/problem/711/D 思路:由于每个点出度都为1,所以没有复杂的环中带环.DFS遍历,若为环则有2^k-2种,若为链则 ...

  2. Codeforces 930A. Peculiar apple-tree (dfs)

    题目: 代码: #include <bits\stdc++.h> using namespace std; ]; //b[i]表示距离1号花絮i步的花絮的个数 map <int, l ...

  3. 【算法导论】图的深度优先搜索遍历(DFS)

    关于图的存储在上一篇文章中已经讲述,在这里不在赘述.下面我们介绍图的深度优先搜索遍历(DFS). 深度优先搜索遍历实在访问了顶点vi后,访问vi的一个邻接点vj:访问vj之后,又访问vj的一个邻接点, ...

  4. 深度优先搜索(DFS)与广度优先搜索(BFS)的Java实现

    1.基础部分 在图中实现最基本的操作之一就是搜索从一个指定顶点可以到达哪些顶点,比如从武汉出发的高铁可以到达哪些城市,一些城市可以直达,一些城市不能直达.现在有一份全国高铁模拟图,要从某个城市(顶点) ...

  5. 图的 储存 深度优先(DFS)广度优先(BFS)遍历

    图遍历的概念: 从图中某顶点出发访遍图中每个顶点,且每个顶点仅访问一次,此过程称为图的遍历(Traversing Graph).图的遍历算法是求解图的连通性问题.拓扑排序和求关键路径等算法的基础.图的 ...

  6. 图的深度优先遍历算法(DFS)

    搜索算法有很多种,本次文章主要分享图(无向图)的深度优先算法.深度优先算法(DFS)主要是应用于搜索中,早期是在爬虫中使用.其主要的思想有如下: 1.先访问一个节点v,然后标记为已被访问过2.找到第一 ...

  7. LeetCode Subsets II (DFS)

    题意: 给一个集合,有n个可能相同的元素,求出所有的子集(包括空集,但是不能重复). 思路: 看这个就差不多了.LEETCODE SUBSETS (DFS) class Solution { publ ...

  8. LeetCode Subsets (DFS)

    题意: 给一个集合,有n个互不相同的元素,求出所有的子集(包括空集,但是不能重复). 思路: DFS方法:由于集合中的元素是不可能出现相同的,所以不用解决相同的元素而导致重复统计. class Sol ...

  9. HDU 2553 N皇后问题(dfs)

    N皇后问题 Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Description 在 ...

随机推荐

  1. rocketmq优雅停机往事

    1 时间追溯到2018年12月的某一天夜晚,那天我正准备上线一个需求完就回家,刚点下发布按钮,告警就响起,我擦,难道回不了家了?看着报错量只有一两个,断定只是偶发,稳住不要慌. 把剩下的机器发完,又出 ...

  2. Coursera Deep Learning笔记 深度卷积网络

    参考 1. Why look at case studies 介绍几个典型的CNN案例: LeNet-5 AlexNet VGG Residual Network(ResNet): 特点是可以构建很深 ...

  3. Convolutional Neural Network-week2编程题2(Residual Networks)

    1. Residual Networks(残差网络) 残差网络 就是为了解决深网络的难以训练的问题的. In this assignment, you will: Implement the basi ...

  4. 寻找写代码感觉(八)之SpringBoot过滤器的使用

    一.什么是过滤器? 过滤器是对数据进行过滤,预处理过程,当我们访问网站时,有时候会发布一些敏感信息,发完以后有的会用*替代,还有就是登陆权限控制等,一个资源,没有经过授权,肯定是不能让用户随便访问的, ...

  5. the Agiles Scrum Meeting 8

    会议时间:2020.4.16 20:00 1.每个人的工作 今天已完成的工作 个人结对项目增量开发组:完成个人项目创建的部分功能 issues:增量组:准备评测机制,增加仓库自动创建和管理 团队项目增 ...

  6. 乘风破浪,遇见上一代操作系统Windows 10 - 抢鲜尝试安装新微软商店(Microsoft Store)

    背景 在微软官方文章的<十一项关于微软商店新知>中提到: 新的微软商店现在可在Windows 11上找到,我们很高兴地分享,它将在未来几个月内提供给Windows 10客户!我们将很快分享 ...

  7. 模拟赛18 T1 施工 题解

    前言: 真的是不容易啊.这个题在考场上想到了最关键的性质,但是没写出来. 后来写出来,一直调,小错不断. 没想到改的最后一个错误是两个int 乘起来爆了int 其实最后我还是觉得复杂度很假.\(n^2 ...

  8. 大神教零基础入门如何快速高效的学习c语言开发

    零基础如果更快更好的入门C语言,如何在枯燥的学习中找到属于自己的兴趣,如果把学习当成一种事务性的那以后的学习将会很难有更深入的进步,如果带着乐趣来完成学习那将越学越有意思这样才会让你有想要更深入学习的 ...

  9. The entitlements specified in your application’s Code Signing Entitlements file do not match those s

    今天给打包 TPshop IOS (搜豹商城) ipa文件 调试运行 xcode运行提示这个错误: The entitlements specified in your application's C ...

  10. 0x04

    二分: while(l<r) { int mid=(l+r)/2; if(符合条件) r=mid; else l=mid+1; } 固定下二分的写法: 终止条件:l==r: 取mid=(l+r) ...