各种多项式操作的 n^2 递推
zszz,使用 NTT 可以在 \(\mathcal O(n\log n)\) 的时间内求出两个多项式的卷积、以及一个多项式的 \(\text{inv},\ln,\exp,\text{sqrt}\) 等,但是如果模数不是 NTT 模数(譬如 \(10^9+7\))并且复杂度允许 \(\mathcal O(n^2)\) 实现上述操作,那么再使用 \(n\log n\) 的 NTT 优化版多项式全家桶就不合适了,因此我们也要懂得如何暴力 \(n^2\) 递推。
多项式乘法
这个就过于弱智了吧……直接枚举对应位然后往它们的和的地方贡献即可,这个幼儿园就学过了(
多项式求逆
假设 \(B\) 为 \(A\) 的逆元,那么显然有 \(AB=1\),即
\]
即
\]
\]
边界 \(B_0=\dfrac{1}{A_0}\)
多项式 \(\ln\)
假设 \(B(x)=\ln A(x)\),那么注意到在我们 NTT 逆元时,我们采用了求导,再积分回去的做法,即 \(B’(x)=\dfrac{A’(x)}{A(x)}\),因此我们只需对 \(A(x)\) 求一遍逆,再积分回去即可,不过事实上还有更简洁(常数更小)的推法,具体来说
\]
\]
\]
\]
\]
一般在取 \(\ln\) 时默认 \(A_0=1\),因此一般来说上式也可以写作
\]
多项式 \(\exp\)
根据 \(\exp\) 的性质,\(\exp’(A(x))=\exp(A(x))A(x)\),因此假设 \(B(x)=\exp(A(x))\),那么显然有
\]
\]
\]
\]
多项式 \(\exp_{\le k}\)
对于多项式 \(A(x)\),定义其 \(\exp_{\le k}\) 为
\]
因此 \(\exp(A(x))\) 也可视为 \(\exp_{\le\infty}\)
那么怎么暴力求这东西呢?我们假设 \(B(x)=\sum\limits_{i=0}^k\dfrac{A^i(x)}{i!}\),那么
\]
\]
\]
我们惊奇地发现 \(\sum\limits_{i=0}^{k-1}\dfrac{A^i(x)}{i!}=B(x)-\dfrac{A^k(x)}{k!}\)
于是
\]
我们假设 \(C(x)=\dfrac{A^k(x)}{k!}\),那么
\]
\]
\]
边界条件 \(B_0=\sum\limits_{i=0}^k\dfrac{A_0^i}{i!}\)
各种多项式操作的 n^2 递推的更多相关文章
- Luogu3824 [NOI2017]泳池 【多项式取模】【递推】【矩阵快速幂】
题目分析: 用数论分块的思想,就会发现其实就是连续一段的长度$i$的高度不能超过$\lfloor \frac{k}{i} \rfloor$,然后我们会发现最长的非$0$一段不会超过$k$,所以我们可以 ...
- java中对于二位数组的简单操作,进而可以递推复杂操作
1.程序 2.结果 3.内循环的次数 arr[x].length
- BZOJ4451 [Cerc2015]Frightful Formula 多项式 FFT 递推 组合数学
原文链接http://www.cnblogs.com/zhouzhendong/p/8820963.html 题目传送门 - BZOJ4451 题意 给你一个$n\times n$矩阵的第一行和第一列 ...
- 【XSY2730】Ball 多项式exp 多项式ln 多项式开根 常系数线性递推 DP
题目大意 一行有\(n\)个球,现在将这些球分成\(k\) 组,每组可以有一个球或相邻两个球.一个球只能在至多一个组中(可以不在任何组中).求对于\(1\leq k\leq m\)的所有\(k\)分别 ...
- 【BZOJ4944】【NOI2017】泳池 概率DP 常系数线性递推 特征多项式 多项式取模
题目大意 有一个\(1001\times n\)的的网格,每个格子有\(q\)的概率是安全的,\(1-q\)的概率是危险的. 定义一个矩形是合法的当且仅当: 这个矩形中每个格子都是安全的 必须紧贴网格 ...
- [JZOJ6088] [BZOJ5376] [loj #2463]【2018集训队互测Day 1】完美的旅行【线性递推】【多项式】【FWT】
Description Solution 我们考虑将问题一步步拆解 第一步求出\(F_{S,i}\)表示一次旅行按位与的值为S,走了i步的方案数. 第二步答案是\(F_{S,i}\)的二维重复卷积,记 ...
- 利用Cayley-Hamilton theorem 优化矩阵线性递推
平时有关线性递推的题,很多都可以利用矩阵乘法来解决. 时间复杂度一般是O(K3logn)因此对矩阵的规模限制比较大. 下面介绍一种利用利用Cayley-Hamilton theorem加速矩阵乘法的方 ...
- 【瞎讲】 Cayley-Hamilton 常系数齐次线性递推式第n项的快速计算 (m=1e5,n=1e18)
[背诵瞎讲] Cayley-Hamilton 常系数齐次线性递推式第n项的快速计算 (m=1e5,n=1e18) 看CSP看到一题"线性递推式",不会做,去问了问zsy怎么做,他并 ...
- 【BZOJ-4547】小奇的集合 矩阵乘法 + 递推
4547: Hdu5171 小奇的集合 Time Limit: 2 Sec Memory Limit: 256 MBSubmit: 175 Solved: 85[Submit][Status][D ...
随机推荐
- docker内服务访问宿主机服务
目录 1. 场景 2. 解决 4. 参考 1. 场景 使用windows, wsl2 进行日常开发测试工作. 但是wsl2经常会遇到网络问题.比如今天在测试一个项目,核心功能是将postgres 的数 ...
- python查询对像所有方法
鉴于学习时好多参数对像都不知道是什么玩意有什么方法,搜了半天一个 """arg为一个对像,下面是打印所有对像方法"""for i, func ...
- Python pip 和pip3区别 联系
python 有python2和python3的区别 那么pip也有pip和pip3的区别 大概是这样的 pip是python的包管理工具,pip和pip3版本不同,都位于Scripts\目录下: 如 ...
- oracle 修改表空间名
1.登录使用sys用户登录 sqlplus sys/ as sysdba 2.修改表空间名字 SQL> alter tablespace 旧表空间名 rename to 新表空间名; 表空间已更 ...
- 『学了就忘』Linux基础命令 — 31、grep命令和通配符
目录 1.grep命令介绍 2.find命令和grep命令的区别(重点) (1)find命令 (2)grep命令 3.通配符与正则表达式的区别 (1)通配符: (2)正则表达式: 1.grep命令介绍 ...
- C++ 指针的引用和指向引用的指针
指向引用的指针 简单使用指针的一个例子就是: int a = 1; int *p = &a; 预先强调: 没有指向引用的指针 原因: 因为引用 不是对象,没有地址. 但是指向引用的指针是什么形 ...
- JVM启动参数详解
JVM启动参数以及具体的解释: -Xmx1024M 最大堆内存 -Xms1024M 初始化堆内存,正常和最大堆内存相同,减少动态改变的内存损耗 -Xmn384M 年轻代内存 -XX:PermSize= ...
- 大一C语言学习笔记(7)---指针篇--什么是指针?什么是指针变量?取地址符“&”的作用是什么?地址运算符“*”的作用是什么,怎么理解两者?
"指针是C语言的灵魂"这句话一开始我没怎么明白,现在接触了指针,终于知道为什么这么说了,因为....难,真难:下面说一下我对这句话的见解: C语言拥有着其他语言所没有的特性---直 ...
- cmd 命令 导出导入oracle数据库 的 表
原地址:https://www.cnblogs.com/mysterious-killer/p/11671741.html (防止) 导出: 不要数据的:exp username/pwd@localh ...
- silky微服务框架的服务治理介绍
目录 服务治理的概念 服务注册与发现 负载均衡 超时 故障转移(失败重试) 熔断保护(断路器) 限流 RPC限流 HTTP限流 1. 添加配置 2. 注册服务 3.启用 AspNetCoreRateL ...