\(\mathcal{Description}\)

  OurTeam.

  给定一棵 \(n\) 个点的树形随机的带边权树,求所有含奇数条边的路径中位数之和。树形生成方式为随机取不连通两点连边直到全部连通。

  \(n\le32000\)。

\(\mathcal{Solution}\)

  考虑用中位数的标准姿势统计每条边的贡献——小于它的设为 \(-1\),大于它的设为 \(+1\),边权相等按编钦定大小关系。那么这条边的贡献就是路径两端权值加和为 \(0\) 的路径对数(显然每对路径连起来都是奇数路径)。

  令 \(f(u,i)\) 表示 \(u\) 子树内到 \(u\) 路径权值和为 \(i\) 的结点数量。对于一条边 \((u,v)\),不妨设 \(u\) 是 \(v\) 的父亲,设我们已经得到了全树的 DP 信息,考虑到题目中随机树的期望深度为 \(\mathcal O(\sqrt n)\),所以暴力爬树统计 \(v\) 子树内和 \(v\) 子树外的信息即可求到当前答案。顺序枚举边,每条边仅会由 \(+1\) 变为 \(-1\),所以暴力仍然暴力爬树修改 DP 信息即可。实现上,利用树深限制,拿一个内存池储存 DP 信息;爬树统计时限制可能贡献答案的权值区间即可通过本题。

  复杂度 \(\mathcal O(n^2)\),不过可以算出带一个 \(\frac{1}6\) 的常数,所以可过。

\(\mathcal{Code}\)

  这里以直径中点作为根(为了和某毒瘤比赛卡常),不过随便选一个根都是可过的。

#include <queue>
#include <cstdio>
#include <cstring> typedef long long LL; const int MAXN = 32000, MAXSQRT = 180, MAXV = 1e6;
int n, ecnt, head[MAXN + 5], fa[MAXN + 5], dep[MAXN + 5], faw[MAXN + 5];
int mempool[MAXN * MAXSQRT * 2], *f[MAXN + 5], *frepos = mempool, *g;
int pre[MAXN + 5], buc[MAXV + 5], ori[MAXN + 5], down[MAXN + 5]; struct Edge { int to, cst, nxt; } graph[MAXN * 2 + 5];
struct EdgeSet { int u, v, w; } eset[MAXN + 5]; inline int rint () {
int x = 0; char s = getchar ();
for ( ; s < '0' || '9' < s; s = getchar () );
for ( ; '0' <= s && s <= '9'; s = getchar () ) x = x * 10 + ( s ^ '0' );
return x;
} inline int min_ ( const int a, const int b ) { return a < b ? a : b; }
inline int max_ ( const int a, const int b ) { return a < b ? b : a; } inline void link ( const int s, const int t, const int c ) {
graph[++ ecnt] = { t, c, head[s] };
head[s] = ecnt;
} inline void BFS ( const int s ) {
static std::queue<int> que;
que.push ( s ); dep[s] = 1;
while ( ! que.empty () ) {
int u = que.front (); que.pop ();
for ( int i = head[u], v; i; i = graph[i].nxt ) {
if ( ! dep[v = graph[i].to] ) {
pre[v] = u, dep[v] = dep[u] + 1;
que.push ( v );
}
}
}
} inline void init ( const int u ) {
dep[u] = 0;
for ( int i = head[u], v; i; i = graph[i].nxt ) {
if ( ( v = graph[i].to ) ^ fa[u] ) {
fa[v] = u, faw[v] = 1, down[graph[i].cst] = v, init ( v );
if ( dep[v] + 1 > dep[u] ) dep[u] = dep[v] + 1;
}
}
f[u] = frepos += dep[u] + 1, frepos += dep[u] + 1;
} inline void DP ( const int u ) {
*f[u] = 1;
for ( int i = head[u], v; i; i = graph[i].nxt ) {
if ( ( v = graph[i].to ) ^ fa[u] ) {
DP ( v );
for ( int j = -dep[v]; j <= dep[v]; ++ j ) f[u][j + 1] += f[v][j];
}
}
} inline LL update ( const int s ) {
int l = -dep[s], r = dep[s]; faw[s] = -1;
for ( int u = fa[s], v = s, d1 = 0, d2 = 0; u; u = fa[v = u] ) {
d1 += v ^ s ? faw[v] : 1, d2 += faw[v];
for ( int i = -dep[s]; i <= dep[s]; ++ i ) {
f[u][i + d1] -= f[s][i];
f[u][i + d2] += f[s][i];
}
for ( int i = max_ ( -dep[u], l ), t = min_ ( dep[u], r ), d = d2 + 1; i <= t; ++ i ) {
g[i + d] += f[u][i] - f[v][i - faw[v]];
}
l -= faw[u], r -= faw[u];
}
LL ret = 0;
for ( int i = -dep[s]; i <= dep[s]; ++ i ) {
ret += 1ll * f[s][i] * g[-i];
g[-i] = 0;
}
return ret;
} int main () {
n = rint (); int mxw = 0;
for ( int i = 1, u, v, w; i < n; ++ i ) {
u = rint (), v = rint (), w = rint ();
eset[i] = { u, v, w }, ++ buc[w];
if ( w > mxw ) mxw = w;
}
for ( int i = 2; i <= mxw; ++ i ) buc[i] += buc[i - 1];
for ( int i = 1; i < n; ++ i ) {
eset[i].w = buc[ori[buc[eset[i].w]] = eset[i].w] --;
link ( eset[i].u, eset[i].v, eset[i].w );
link ( eset[i].v, eset[i].u, eset[i].w );
}
BFS ( 1 );
int s = 0, t = 0;
for ( int i = 1; i <= n; ++ i ) {
if ( dep[i] > dep[s] ) s = i;
dep[i] = pre[i] = 0;
}
BFS ( s );
for ( int i = 1; i <= n; ++ i ) if ( dep[i] > dep[t] ) t = i;
for ( int i = dep[s] + dep[t] - 2 >> 1; i --; t = pre[t] );
init ( t ), DP ( t );
g = frepos += dep[t] + 1, frepos += dep[t] + 1;
LL ans = 0;
for ( int i = 1; i < n; ++ i ) ans += ori[i] * update ( down[i] );
printf ( "%lld\n", ans );
return 0;
}

Solution -「LOCAL」画画图的更多相关文章

  1. Solution -「LOCAL」二进制的世界

    \(\mathcal{Description}\)   OurOJ.   给定序列 \(\{a_n\}\) 和一个二元运算 \(\operatorname{op}\in\{\operatorname{ ...

  2. Solution -「LOCAL」大括号树

    \(\mathcal{Description}\)   OurTeam & OurOJ.   给定一棵 \(n\) 个顶点的树,每个顶点标有字符 ( 或 ).将从 \(u\) 到 \(v\) ...

  3. Solution -「LOCAL」过河

    \(\mathcal{Description}\)   一段坐标轴 \([0,L]\),从 \(0\) 出发,每次可以 \(+a\) 或 \(-b\),但不能越出 \([0,L]\).求可达的整点数. ...

  4. Solution -「LOCAL」Drainage System

    \(\mathcal{Description}\)   合并果子,初始果子的权值在 \(1\sim n\) 之间,权值为 \(i\) 的有 \(a_i\) 个.每次可以挑 \(x\in[L,R]\) ...

  5. Solution -「LOCAL」Burning Flowers

      灼之花好评,条条生日快乐(假装现在 8.15)! \(\mathcal{Description}\)   给定一棵以 \(1\) 为根的树,第 \(i\) 个结点有颜色 \(c_i\) 和光亮值 ...

  6. Solution -「LOCAL」ZB 平衡树

    \(\mathcal{Description}\)   OurOJ.   维护一列二元组 \((a,b)\),给定初始 \(n\) 个元素,接下来 \(m\) 次操作: 在某个位置插入一个二元组: 翻 ...

  7. Solution -「LOCAL」舟游

    \(\mathcal{Description}\)   \(n\) 中卡牌,每种三张.对于一次 \(m\) 连抽,前 \(m-1\) 次抽到第 \(i\) 种的概率是 \(p_i\),第 \(m\) ...

  8. Solution -「LOCAL」充电

    \(\mathcal{Description}\)   给定 \(n,m,p\),求序列 \(\{a_n\}\) 的数量,满足 \((\forall i\in[1,n])(a_i\in[1,m])\l ...

  9. Solution -「LOCAL」「cov. 牛客多校 2020 第五场 C」Easy

    \(\mathcal{Description}\)   Link.(完全一致)   给定 \(n,m,k\),对于两个长度为 \(k\) 的满足 \(\left(\sum_{i=0}^ka_i=n\r ...

随机推荐

  1. PyCharm撤消/恢复

    PyCharm在撤消/重做的每个步骤之前移动插入符号,然后执行撤消/重做操作. 要撤消操作,请执行以下操作之一: 在主菜单上,选择Edit | Undo. 按Ctrl+Z. 要恢复操作,请执行以下操作 ...

  2. BrowserSync 本地服务器的起用

    最简单粗暴的方法:进入项目根目录,执行命令browser-sync start --server --files "**"     监听所有

  3. PPT2010初识

    原文链接:https://www.toutiao.com/i6486689592241029645/ 一.认识PPT PPT是PowerPoint简称,主要用于演示文稿的创建,即幻灯片的制作演示软件. ...

  4. 战争游戏(War Games 1983)剧情

    战争游戏 War Games(1983) 人工控制导弹发射 傍晚大雾,两值工作人员自驾一辆轿车到达监控俄罗斯核战争的防空基地,在门口出示工作证后进入基地,两工作人员和同事换班后,进入防空系统控制室开始 ...

  5. node之module与fs文件系统

    命令行窗口(小黑屏).cmd窗口.终端.shell 开始菜单 --> 运行 --> CMD --> 回车 常用的指令: dir 列出当前目录下的所有文件 cd 目录名 进入到指定的目 ...

  6. 基于Bert的恶意软件多分类

    基于Bert从Windows API序列做恶意软件的多分类 目录 基于Bert从Windows API序列做恶意软件的多分类 0x00 数据集 0x01 BERT BERT的模型加载 从文本到ids ...

  7. Solon Web 开发,八、校验、及定制与扩展

    Solon Web 开发 一.开始 二.开发知识准备 三.打包与运行 四.请求上下文 五.数据访问.事务与缓存应用 六.过滤器.处理.拦截器 七.视图模板与Mvc注解 八.校验.及定制与扩展 九.跨域 ...

  8. 【刷题-LeetCode】147 Insertion Sort List

    Insertion Sort List Sort a linked list using insertion sort. A graphical example of insertion sort. ...

  9. IDEA2017 maven Spark HelloWorld项目(本地断点调试)

    作为windows下的spark开发环境 1.应用安装 首先安装好idea2017 java8 scalaJDK spark hadoop(注意scala和spark的版本要匹配) 2.打开idea, ...

  10. 数组的sort()排序

    1.sort() 方法用于对数组的元素进行排序,并返回数组.默认排序顺序是根据字符串Unicode码点,也就是你不传参进去的话,默认按字符串Unicode码点来排序,而不是按数字大小来排序 2.arr ...