一.简介

xgboost在集成学习中占有重要的一席之位,通常在各大竞赛中作为杀器使用,同时它在工业落地上也很方便,目前针对大数据领域也有各种分布式实现版本,比如xgboost4j-spark,xgboost4j-flink等。xgboost的基础也是gbm,即梯度提升模型,它在此基础上做了进一步优化...

二.损失函数:引入二阶项

xgboost的损失函数构成如下,即一个经验损失项+正则损失项:

\[Cost(y,F_{m-1},f_m)=\sum_{i=1}^n L(y_i,F_{m-1}(x_i)+f_m(x_i))+\Omega(f_m)
\]

这里\(n\)表示样本数,\(F_{m-1}\)表示前\(m-1\)轮模型,\(f_m\)表示第\(m\)轮新训练模型,所以\(F_m=F_{m-1}+f_m\),\(\Omega(f_m)\)是对第\(m\)轮新训练模型进行约束的正则化项,在前面第6小节做过探索,对损失函数近似做二阶泰勒展开,并对近似损失函数做优化,通常会收敛的更快更好,接下里看下对第\(i\)个样本的经验项损失函数做二阶展开:

\[L(y_i,F_{m-1}(x_i)+f_m(x_i))=L(y_i,F_{m-1}(x_i))+g_if_m(x_i)+\frac{1}{2}h_if_m^2(x_i)
\]

这里:

\[g_i=\frac{\partial L(y_i,F_{m-1}(x_i))}{\partial F_{m-1}(x_i)}\\
h_i=\frac{\partial^2 L(y_i,F_{m-1}(x_i))}{\partial {F_{m-1}(x_i)}^2}
\]

对于第\(m\)轮,\(L(y_i,F_{m-1}(x_i))\)为常数项,不影响优化,可以省略掉,所以损失函数可以表示为如下:

\[Cost(y,F_{m-1},f_m)=\sum_{i=1}^n [g_if_m(x_i)+\frac{1}{2}h_if_m^2(x_i)]+\Omega(f_m)
\]

这便是xgboost的学习框架,针对不同问题,比如回归、分类、排序,会有不同的\(L(\cdot)\)以及\(\Omega(\cdot)\),另外由于需要二阶信息,所以\(L(\cdot)\)必须要能二阶可微,接下来对基学习器为决策树的情况做推导

三.基学习器:回归决策树

下面推导一下基学习器为回归树的情况,当选择决策树时,它的正则化项如下:

\[\Omega(f_m)=\gamma T+\frac{1}{2}\lambda\sum_{j=1}^T\omega_j^2
\]

其中,\(j=1,2,...,T\)表达对应的叶节点编号,\(\omega_j\)表示落在第\(j\)个叶节点的样本的预测值,即:

\[\omega_j=f_m(x_i),x_i\in I_j
\]

\(I_j\)表示第\(j\)个叶子节点所属区域,所以决策树的损失函数可以改写为如下:

\[Cost(y,F_{m-1},f_m)=\sum_{j=1}^T[(\sum_{i\in I_j}g_i)\omega_j+\frac{1}{2}(\sum_{i\in I_j}h_i+\lambda)\omega_j^2]+\gamma T
\]

这其实是关于\(\omega\)的一元二次函数,直接写出它的最优解:

\[\omega_j^*=-\frac{G_j}{H_j+\lambda}
\]

这里\(G_j=\sum_{i\in I_j}g_i,H_j=\sum_{i\in I_j}h_i\),可见\(L_2\)正则项起到了缩小叶子节点权重的效果,减少其对整个预测结果的影响,从而防止过拟合,将\(\omega_j^*\)带入可得损失值:

\[Cost(y,F_{m-1},f_m^*)=-\frac{1}{2}\sum_{j=1}^T\frac{G_j^2}{H_j+\lambda}+\gamma T
\]

特征选择

很显然,上面的损失函数可以直接用于特征选择中,对某节点在分裂前的评分为:

\[Score_{pre}=-\frac{1}{2}\frac{G^2}{H+\lambda}+\gamma
\]

分裂后,左右子节点的评分和为:

\[Score_{pre}=-\frac{1}{2}(\frac{G_L^2}{H_L+\lambda}+\frac{G_R^2}{H_R+\lambda})+2\gamma
\]

所以分裂所能带来的增益:

\[Score=\frac{1}{2}[\frac{G_L^2}{H_L+\lambda}+\frac{G_R^2}{H_R+\lambda}-\frac{G^2}{H+\lambda}]-\gamma
\]

这里\(G=G_L+G_R,H=H_L+H_R\)

四.代码实现

这部分对xgboost中的回归树做简单实现,大体流程其实与CART回归树差不多,下面说下它与CART回归树不一样的几个点:

(1)这里fit与之前的CART回归树有些不一样了,之前是fit(x,y),而现在需要fit(x,g,h)

(2)特征选择不一样了,之前是求平方误差的增益,现在需要利用一阶和二阶导数信息,见上面的\(Score\)

(3)叶子节点的预测值不一样了,之前是求均值,现在需利用一阶和二阶导数信息,见上面的\(w_j^*\)

接下来对xgboost所需要用到的回归树做简单实现

import os
os.chdir('../')
import numpy as np
from ml_models.wrapper_models import DataBinWrapper """
xgboost基模型:回归树的实现,封装到ml_models.ensemble
""" class XGBoostBaseTree(object):
class Node(object):
"""
树节点,用于存储节点信息以及关联子节点
""" def __init__(self, feature_index: int = None, feature_value=None, y_hat=None, score=None,
left_child_node=None, right_child_node=None, num_sample: int = None):
"""
:param feature_index: 特征id
:param feature_value: 特征取值
:param y_hat: 预测值
:param score: 损失函数值
:param left_child_node: 左孩子结点
:param right_child_node: 右孩子结点
:param num_sample:样本量
"""
self.feature_index = feature_index
self.feature_value = feature_value
self.y_hat = y_hat
self.score = score
self.left_child_node = left_child_node
self.right_child_node = right_child_node
self.num_sample = num_sample def __init__(self, max_depth=None, min_samples_split=2, min_samples_leaf=1, gamma=1e-2, lamb=1e-1,
max_bins=10):
"""
:param max_depth:树的最大深度
:param min_samples_split:当对一个内部结点划分时,要求该结点上的最小样本数,默认为2
:param min_samples_leaf:设置叶子结点上的最小样本数,默认为1
:param gamma:即损失函数中的gamma
:param lamb:即损失函数中lambda
"""
self.max_depth = max_depth
self.min_samples_split = min_samples_split
self.min_samples_leaf = min_samples_leaf
self.gamma = gamma
self.lamb = lamb self.root_node: self.Node = None
self.dbw = DataBinWrapper(max_bins=max_bins) def _score(self, g, h):
"""
计算损失损失评分
:param g:一阶导数
:param h: 二阶导数
:return:
"""
G = np.sum(g)
H = np.sum(h)
return -0.5 * G ** 2 / (H + self.lamb) + self.gamma def _build_tree(self, current_depth, current_node: Node, x, g, h):
"""
递归进行特征选择,构建树
:param x:
:param y:
:param sample_weight:
:return:
"""
rows, cols = x.shape
# 计算G和H
G = np.sum(g)
H = np.sum(h)
# 计算当前的预测值
current_node.y_hat = -1 * G / (H + self.lamb)
current_node.num_sample = rows
# 判断停止切分的条件
current_node.score = self._score(g, h) if rows < self.min_samples_split:
return if self.max_depth is not None and current_depth > self.max_depth:
return # 寻找最佳的特征以及取值
best_index = None
best_index_value = None
best_criterion_value = 0
for index in range(0, cols):
for index_value in sorted(set(x[:, index])):
left_indices = np.where(x[:, index] <= index_value)
right_indices = np.where(x[:, index] > index_value)
criterion_value = current_node.score - self._score(g[left_indices], h[left_indices]) - self._score(
g[right_indices], h[right_indices])
if criterion_value > best_criterion_value:
best_criterion_value = criterion_value
best_index = index
best_index_value = index_value # 如果减少不够则停止
if best_index is None:
return
# 切分
current_node.feature_index = best_index
current_node.feature_value = best_index_value
selected_x = x[:, best_index] # 创建左孩子结点
left_selected_index = np.where(selected_x <= best_index_value)
# 如果切分后的点太少,以至于都不能做叶子节点,则停止分割
if len(left_selected_index[0]) >= self.min_samples_leaf:
left_child_node = self.Node()
current_node.left_child_node = left_child_node
self._build_tree(current_depth + 1, left_child_node, x[left_selected_index], g[left_selected_index],
h[left_selected_index])
# 创建右孩子结点
right_selected_index = np.where(selected_x > best_index_value)
# 如果切分后的点太少,以至于都不能做叶子节点,则停止分割
if len(right_selected_index[0]) >= self.min_samples_leaf:
right_child_node = self.Node()
current_node.right_child_node = right_child_node
self._build_tree(current_depth + 1, right_child_node, x[right_selected_index], g[right_selected_index],
h[right_selected_index]) def fit(self, x, g, h):
# 构建空的根节点
self.root_node = self.Node() # 对x分箱
self.dbw.fit(x) # 递归构建树
self._build_tree(1, self.root_node, self.dbw.transform(x), g, h) # 检索叶子节点的结果
def _search_node(self, current_node: Node, x):
if current_node.left_child_node is not None and x[current_node.feature_index] <= current_node.feature_value:
return self._search_node(current_node.left_child_node, x)
elif current_node.right_child_node is not None and x[current_node.feature_index] > current_node.feature_value:
return self._search_node(current_node.right_child_node, x)
else:
return current_node.y_hat def predict(self, x):
# 计算结果
x = self.dbw.transform(x)
rows = x.shape[0]
results = []
for row in range(0, rows):
results.append(self._search_node(self.root_node, x[row]))
return np.asarray(results)

下面简单测试一下功能,假设\(F_0(x)=0\),损失函数为平方误差的情况,则其一阶导为\(g=F_0(x)-y=-y\),二阶导为\(h=1\)

#构造数据
data = np.linspace(1, 10, num=100)
target1 = 3*data[:50] + np.random.random(size=50)*3#添加噪声
target2 = 3*data[50:] + np.random.random(size=50)*10#添加噪声
target=np.concatenate([target1,target2])
data = data.reshape((-1, 1))
import matplotlib.pyplot as plt
%matplotlib inline
model=XGBoostBaseTree(lamb=0.1,gamma=0.1)
model.fit(data,-1*target,np.ones_like(target))
plt.scatter(data, target)
plt.plot(data, model.predict(data), color='r')
[<matplotlib.lines.Line2D at 0x1d8fa8fd828>]

分别看看lambda和gamma的效果

model=XGBoostBaseTree(lamb=1,gamma=0.1)
model.fit(data,-1*target,np.ones_like(target))
plt.scatter(data, target)
plt.plot(data, model.predict(data), color='r')
[<matplotlib.lines.Line2D at 0x1d8eb88cf60>]

model=XGBoostBaseTree(lamb=0.1,gamma=100)
model.fit(data,-1*target,np.ones_like(target))
plt.scatter(data, target)
plt.plot(data, model.predict(data), color='r')
[<matplotlib.lines.Line2D at 0x1d8fc9e3b38>]


《机器学习Python实现_10_10_集成学习_xgboost_原理介绍及回归树的简单实现》的更多相关文章

  1. 简单物联网:外网访问内网路由器下树莓派Flask服务器

    最近做一个小东西,大概过程就是想在教室,宿舍控制实验室的一些设备. 已经在树莓上搭了一个轻量的flask服务器,在实验室的路由器下,任何设备都是可以访问的:但是有一些限制条件,比如我想在宿舍控制我种花 ...

  2. 利用ssh反向代理以及autossh实现从外网连接内网服务器

    前言 最近遇到这样一个问题,我在实验室架设了一台服务器,给师弟或者小伙伴练习Linux用,然后平时在实验室这边直接连接是没有问题的,都是内网嘛.但是回到宿舍问题出来了,使用校园网的童鞋还是能连接上,使 ...

  3. 外网访问内网Docker容器

    外网访问内网Docker容器 本地安装了Docker容器,只能在局域网内访问,怎样从外网也能访问本地Docker容器? 本文将介绍具体的实现步骤. 1. 准备工作 1.1 安装并启动Docker容器 ...

  4. 外网访问内网SpringBoot

    外网访问内网SpringBoot 本地安装了SpringBoot,只能在局域网内访问,怎样从外网也能访问本地SpringBoot? 本文将介绍具体的实现步骤. 1. 准备工作 1.1 安装Java 1 ...

  5. 外网访问内网Elasticsearch WEB

    外网访问内网Elasticsearch WEB 本地安装了Elasticsearch,只能在局域网内访问其WEB,怎样从外网也能访问本地Elasticsearch? 本文将介绍具体的实现步骤. 1. ...

  6. 怎样从外网访问内网Rails

    外网访问内网Rails 本地安装了Rails,只能在局域网内访问,怎样从外网也能访问本地Rails? 本文将介绍具体的实现步骤. 1. 准备工作 1.1 安装并启动Rails 默认安装的Rails端口 ...

  7. 怎样从外网访问内网Memcached数据库

    外网访问内网Memcached数据库 本地安装了Memcached数据库,只能在局域网内访问,怎样从外网也能访问本地Memcached数据库? 本文将介绍具体的实现步骤. 1. 准备工作 1.1 安装 ...

  8. 怎样从外网访问内网CouchDB数据库

    外网访问内网CouchDB数据库 本地安装了CouchDB数据库,只能在局域网内访问,怎样从外网也能访问本地CouchDB数据库? 本文将介绍具体的实现步骤. 1. 准备工作 1.1 安装并启动Cou ...

  9. 怎样从外网访问内网DB2数据库

    外网访问内网DB2数据库 本地安装了DB2数据库,只能在局域网内访问,怎样从外网也能访问本地DB2数据库? 本文将介绍具体的实现步骤. 1. 准备工作 1.1 安装并启动DB2数据库 默认安装的DB2 ...

  10. 怎样从外网访问内网OpenLDAP数据库

    外网访问内网OpenLDAP数据库 本地安装了OpenLDAP数据库,只能在局域网内访问,怎样从外网也能访问本地OpenLDAP数据库? 本文将介绍具体的实现步骤. 1. 准备工作 1.1 安装并启动 ...

随机推荐

  1. Jsp授课

    2.1 JSP基础 2.1.1 JSP简介 JSP全称是Java Server Page,是一种动态网页技术标准.它和Servlet一样,也是sun公司推出的一套开发动态web资源的技术,称为JSP/ ...

  2. Python运算符 - Python零基础入门教程

    目录 一.算术运算符 二.赋值运算符 三.比较运算符 四.运算符的优先等级 五.重点总结 六.猜你喜欢 零基础 Python 学习路线推荐 : Python 学习目录 >> Python ...

  3. 网速测试利器-iperf3

    网速测试利器-iperf3 使用工具   简介 iperf3是一个网络速度测试工具,支持IPv4与IPv6,支持TCP.UDP.SCTP传输协议,可在Windows.Mac OS X.Linux.Fr ...

  4. Tomcat修改jdk版本

    tomcat修改jdk版本 修改tomcat bin目录下的catalina.sh和setclasspath.sh文件,添加以下内容 export JAVA_HOME=/home/nodemanage ...

  5. 无法开机 如果您的手机黑屏无法开机,可以按照以下方式操作尝试: 如果是,使用原装充电器或使用弱电流方式充电(例如使用电脑USB接口充电)充电15-30分钟后尝试重新开机;注意:电量过低引起的无法开机,刚插入充电器时可能不亮屏但呼吸灯闪烁状态。

    https://www.mi.com/service/support/startup 无法开机 如果您的手机黑屏无法开机,可以按照以下方式操作尝试: 技术支持 如何刷机 无法开机 手机自动关机.重启 ...

  6. (转)细说linux挂载

    个人觉得说的很透彻的一篇文章,深入浅出,通俗易懂,把好久之前的一些概念彻底厘清了. 转自https://www.cnblogs.com/ma5on/p/4357625.html 转载的文章不能分类 这 ...

  7. IDEA 安装 zookeeper 可视化管理插件

    1. 安装 zookeeper 插件 打开 IDEA->Settings->Plugins,然后在 Marketplace 输入 "zookeeper" 如下: 插件安 ...

  8. Linux中级之netfilter/iptables应用及补充

    一.iptables介绍 Netfilter/Iptables(以下简称Iptables)是unix/linux自带的一款优秀且开放源代码的完全自由的基于包过滤的防火墙工具,它的功能十分强大,使用非常 ...

  9. 1.2Linux 主要目录速查表

    Linux 主要目录速查表 /:根目录,一般根目录下只存放目录,在 linux 下有且只有一个根目录,所有的东西都是从这里开始 当在终端里输入 /home,其实是在告诉电脑,先从 /(根目录)开始,再 ...

  10. STM32F1移植UCOSII

    作者:珵旭媛 下载对应版本的UCOSII https://www.micrium.com/downloadcenter/,你会少修改很多东西: 下载下来后是这样的文件夹,并且Software里面的才是 ...