将TVM集成到PyTorch

随着TVM不断展示出对深度学习执行效率的改进,很明显PyTorch将从直接利用编译器堆栈中受益。PyTorch的主要宗旨是提供无缝且强大的集成,而这不会妨碍用户。PyTorch现在具有基于TVM的官方后端torch_tvm

用法很简单:

import torch_tvm

torch_tvm.enable()

就是这样!然后,PyTorch将尝试在其JIT编译过程中,将所有可能的算子转换为已知的Relay算子。

背景

与许多其它ML框架不同,PyTorch公开了一个执行的编程接口。这种编程风格避免了图元编程,而专注于以Python方式直接控制n维数组(张量)。该框架最初非常适合模型的试验和开发,但不适用于自动性能优化或部署。为了利用优化的编译器技术,PyTorch最近引入了一些较大的改进来解决此问题。

PyTorch 1.0引入了PyTorch IR,PyTorch专用的中间表示形式,用于类似于Relay的模型。可以通过模型跟踪,将PyTorch程序转换为IR,该跟踪记录模型或Python的子集TorchScript的执行。新的TVM后端将PyTorch的IR降低到了Relay,能够透明地提高PyTorch的性能,无需用户参与。

整合与结果

为了支持Relay,PyTorch JIT添加了两个功能:自定义转换过程和自定义子图解释器。

torch_tvm启用时,可以转换到Relay PyTorch IR的子图Expr旨意被标记为Relay 兼容。由于PyTorch IR并不总是包含形状信息,因此在调用之前,无法以有用的方式编译任何子图。

在用户调用期间,PyTorch JIT Runtime将确定输入形状信息,并使用新的Relay C ++构建系统,编译先前标记的子图。根据输入形状来缓存编译,以供后续运行。可以在README中找到更多详细信息。

torch_tvm建立了一个连续的基准测试系统,该系统正在监视ResNet18在CPU上的性能。对于各种ResNet型号,TVM的性能都是默认PyTorch JIT后端的两倍以上。下图详细描述了在AWS c5n.4xlarge实例上,使用16个线程实现的每秒迭代次数(越大越好):

这些结果令人鼓舞,该项目将继续致力于在更多模型上提高CPU推理速度。

未来的工作

现在,PyTorch JIT进行了大量工作来查找其IR的纯功能子集,馈送到Relay。避免了将采样和控制流信息映射到Relay,这不是必需的。将更多的PyTorch IR映射到Relay,可能会取得性能上的胜利,这是该项目的目标。PyTorch IR在开发过程中正在迅速变化,因此必须谨慎进行。

将做更多的工作来确保PyTorch和TVM代码之间的切换是有效的。这包括统一线程模型,分配器以及减少与将输入复制到TVM相关的开销。

help文件

如果已经编写了PyTorch模型,最简单的入门方法就是使用torch.jit.trace方法

import torch_tvm
from your_model import model, inputs
 
torch_tvm.enable(opt_level=3)
 
iters = 100
warmup = 10
 
# Ensure your model is in eval mode and also turn off gradients.
with torch.no_grad():
  # Use tuned parameters for better performance.
  with autotvm.apply_history_best("test/autotvm_tuning.log"):
    # This is where all the compilation happens.
    trace_tvm = torch.jit.trace(model, inputs)
    
    # Warmup
    for _ in range(warmup):
      _ = trace_tvm(*inputs)
 
    # Benchmark
    start = time.time()
    for _ in range(iters):
      _ = trace_tvm(*inputs)
    tvm_time = time.time() - start
    
    print("Took {}s to run {} iters".format(tvm_time, iters))

注意,用于AVX2 LLVM编译的调整参数位于存储库test/文件夹中。

如果直接使用Relay,可以通过(隐式)跟踪或TorchScript直接,从PyTorch函数中提取表达式:

def add(a, b, c):
    return a + b + c
 
# via tracing
relay_graph = torch_tvm.to_relay(add, inputs)
 
@torch.jit.script
def mul(a, b, c):
    return a * b * c
 
# via script
relay_graph = torch_tvm.to_relay(mul, inputs)

将TVM集成到PyTorch的更多相关文章

  1. 将TVM集成到PyTorch上

    将TVM集成到PyTorch上 随着TVM不断展示出对深度学习执行效率的改进,很明显PyTorch将从直接利用编译器堆栈中受益.PyTorch的主要宗旨是提供无缝且强大的集成,而这不会妨碍用户.为此, ...

  2. 桥接PyTorch和TVM

    桥接PyTorch和TVM 人工智能最引人入胜的一些应用是自然语言处理.像BERT或GPT-2之类的模型及其变体,可以获住足够多的文本信息. 这些模型属于称为Transformers的神经网络类体系结 ...

  3. 官宣,PyTorch 1.0 稳定版本现已推出

    简评:快来一起快乐地学习吧. 随着 PyTorch 生态系统和社区继续为开发人员提供有趣的新项目和教育资源,今天(12 月 7日)在 NeurIPS 会议上发布了 PyTorch 1.0 稳定版.研究 ...

  4. Pytorch实现MNIST(附SGD、Adam、AdaBound不同优化器下的训练比较) adabound实现

     学习工具最快的方法就是在使用的过程中学习,也就是在工作中(解决实际问题中)学习.文章结尾处附完整代码. 一.数据准备  在Pytorch中提供了MNIST的数据,因此我们只需要使用Pytorch提供 ...

  5. 英特尔与 Facebook 合作采用第三代英特尔® 至强® 可扩展处理器和支持 BFloat16 加速的英特尔® 深度学习加速技术,提高 PyTorch 性能

    英特尔与 Facebook 曾联手合作,在多卡训练工作负载中验证了 BFloat16 (BF16) 的优势:在不修改训练超参数的情况下,BFloat16 与单精度 32 位浮点数 (FP32) 得到了 ...

  6. [源码解析] PyTorch 分布式之弹性训练(1) --- 总体思路

    [源码解析] PyTorch 分布式之弹性训练(1) --- 总体思路 目录 [源码解析] PyTorch 分布式之弹性训练(1) --- 总体思路 0x00 摘要 0x01 痛点 0x02 难点 0 ...

  7. 解决编译caffe2遇到的坑

    首先我们要从源码克隆caffe2的库: git clone --recursive https://github.com/caffe2/caffe2.git 执行下载过程会报这样的错: Cloning ...

  8. 腾讯 angel 3.0:高效处理模型

    腾讯 angel 3.0:高效处理模型 紧跟华为宣布新的 AI 框架开源的消息,腾讯又带来了全新的全栈机器学习平台 angel3.0.新版本功能特性覆盖了机器学习的各个阶段,包括:特征工程.模型训练. ...

  9. [源码分析] Facebook如何训练超大模型---(1)

    [源码分析] Facebook如何训练超大模型---(1) 目录 [源码分析] Facebook如何训练超大模型---(1) 0x00 摘要 0x01 简介 1.1 FAIR & FSDP 1 ...

随机推荐

  1. 【原创】Centos8安装ansible

    1.安装步骤 # 安装epel扩展源 dnf install https://dl.fedoraproject.org/pub/epel/epel-release-latest-8.noarch.rp ...

  2. 病毒木马查杀实战第017篇:U盘病毒之专杀工具的编写

    前言 经过前几次的讨论,我们对于这次的U盘病毒已经有了一定的了解,那么这次我们就依据病毒的行为特征,来编写针对于这次U盘病毒的专杀工具. 专杀工具功能说明 因为这次是一个U盘病毒,所以我打算把这次的专 ...

  3. DVWA之File Upload (文件上传漏洞)

    目录 Low: Medium: 方法一:抓包修改文件的type 方法二:00截断 High: Impossible : Low: 源代码: <?php if( isset( $_POST[ 'U ...

  4. ASLR 的关闭与开启(适用于 Windows7 及更高版本)

    ASLR 是一种针对缓冲区溢出的安全保护技术,通过对堆.栈.共享库映射等线性区布局的随机化,通过增加攻击者预测目的地址的难度,防止攻击者直接定位攻击代码位置,达到阻止溢出攻击的目的的一种技术 有的时候 ...

  5. 【CSS】CSS3从入门到深入(复习查漏向

    CSS3从入门到深入(复习查漏向 pre_section CSS:层叠样式表,决定网页表现 网页为多层结构,CSS为每一层设置样式,最后显示最上一层 CSS语句 = 选择器 + 声明块 形式 内联样式 ...

  6. JAVA教程 Java学习路线

  7. 对标印度的PostMan,一款中国接口测试软件的崛起

    对于我们开发者,Api接口调试一定不陌生.包括我在内,之前进行Api调试时,一直使用的是一款印度的软件Postman.记得刚入手的时候,由于该款软件缺乏中文版本,上手一直比较慢,而且还至少存在如下几个 ...

  8. Jenkins+Git的搭建和自动部署

    前言 Jenkins在工作中都使用过,之前都是运维去搭建部署,弄好了之后给我一个网址去构建项目就可以了,所以也都是一直没了解过安装过程. 今天在自己的服务器上搭建了一遍,中间有遇到很多坑,特在此归纳总 ...

  9. Educational Codeforces Round 96 (Rated for Div. 2)

    A. Number of Apartments 题意:求方程的解 思路:直接模拟就行 代码: #include<iostream> #include<cstdio> #incl ...

  10. OO_Unit3_JML规格模式

    ---恢复内容开始--- [CSDN博客链接](https://blog.csdn.net/weixin_43387647/article/details/90451173) @[toc] ## 一. ...