1.阈值分割

import os
import cv2
import numpy as np
import matplotlib.pyplot as plt
from osgeo import gdal GRAY_SCALE = 256 def tif_jpg(rasterfile):
in_ds = gdal.Open(rasterfile) # 打开样本文件
xsize = in_ds.RasterXSize # 获取行列数
ysize = in_ds.RasterYSize
bands = in_ds.RasterCount
block_data = in_ds.ReadAsArray(0, 0, xsize, ysize).astype(np.float32)
B = block_data[0, :, :] G = block_data[ 1,:, :]
R = block_data[2,:, :]
R1 = (R/np.max(R)*255).astype(np.int16)
G1 = (G / np.max(G) * 255).astype(np.int16)
B1 = (B / np.max(B) * 255).astype(np.int16)
data2 = cv2.merge([R1,G1,B1])
return data2 def write_tiff(path,image_gray,out):
in_ds = gdal.Open(path) # 打开样本文件
xsize = in_ds.RasterXSize # 获取行列数
ysize = in_ds.RasterYSize
bands = in_ds.RasterCount
geotransform = in_ds.GetGeoTransform()
projection = in_ds.GetProjectionRef() driver = gdal.GetDriverByName('GTiff')
outfile = out + "\\" + os.path.basename(path).split(".tif")[0] + "_mask.tif" # 对输出文件命名
out_dataset = driver.Create(outfile, xsize, ysize, 1, gdal.GDT_Float32) # 创建一个一波段的数据框架
out_band1 = out_dataset.GetRasterBand(1)
out_band1.WriteArray(image_gray) out_dataset.SetGeoTransform(geotransform) # 写入仿射变换
out_dataset.SetProjection(projection)
if __name__ == '__main__':
path = r"D:\data\实验数据\3\3.tif"
out = r"D:\data\实验结果" #设置阈值
thresh=40 #tif转jpg并灰度化
img = tif_jpg(path).astype(np.uint8)
image_gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
#高斯滤波
img_blur = cv2.GaussianBlur(image_gray , (5, 5), 5)
# 阈值提取
img_blur[img_blur > thresh] = 255
img_blur[img_blur<= thresh] =1
write_tiff(path, img_blur, out)

2.直方图双峰法阈值分割

import os
from osgeo import gdal
import numpy as np
import cv2
GRAY_SCALE = 256 def tif_jpg(rasterfile):
in_ds = gdal.Open(rasterfile) # 打开样本文件
xsize = in_ds.RasterXSize # 获取行列数
ysize = in_ds.RasterYSize
bands = in_ds.RasterCount
block_data = in_ds.ReadAsArray(0, 0, xsize, ysize).astype(np.float32)
B = block_data[0, :, :] G = block_data[ 1,:, :]
R = block_data[2,:, :]
R1 = (R/np.max(R)*255)
G1 = (G / np.max(G) * 255)
B1 = (B / np.max(B) * 255)
data2 = cv2.merge([R1,G1,B1]).astype(np.int16)
return data2 def calcGrayHist(image):
'''
统计像素值
:param image:
:return:
'''
# 灰度图像的高,宽
rows, cols = image.shape
# 存储灰度直方图
grayHist = np.zeros([256], np.uint64)
for r in range(rows):
for c in range(cols):
grayHist[image[r][c]] += 1
return grayHist #直方图全局阈值
def threshTwoPeaks(image): # 计算灰度直方图
histogram = calcGrayHist(image) # 找到灰度直方图的最大峰值对应的灰度值
maxLoc = np.where(histogram == np.max(histogram))
firstPeak = maxLoc[0][0] # 寻找灰度直方图的第二个峰值对应的灰度值
measureDists = np.zeros([256], np.float32)
for k in range(256):
measureDists[k] = pow(k - firstPeak, 3) * histogram[k]#GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG
maxLoc2 = np.where(measureDists == np.max(measureDists))
secondPeak = maxLoc2[0][0] if firstPeak > secondPeak:
temp = histogram[int(secondPeak): int(firstPeak)]
minLoc = np.where(temp == np.min(temp))
thresh = secondPeak + minLoc[0][0]+ 1
else:
temp = histogram[int(firstPeak): int(secondPeak)]
minLoc = np.where(temp == np.min(temp))
thresh = firstPeak + minLoc[0][0]
img = image.copy()
img[img >= thresh] = 255
img[img < thresh] = 0
print("firstPeak:",firstPeak,",secondPeak:",secondPeak,",thresh:",thresh)
return img def write_tiff(path,image_gray,out):
in_ds = gdal.Open(path) # 打开样本文件
xsize = in_ds.RasterXSize # 获取行列数
ysize = in_ds.RasterYSize
bands = in_ds.RasterCount
geotransform = in_ds.GetGeoTransform()
projection = in_ds.GetProjectionRef()
driver = gdal.GetDriverByName('GTiff')
outfile = out + "\\" + os.path.basename(path).split(".tif")[0] + "_mask.tif" # 对输出文件命名
out_dataset = driver.Create(outfile, xsize, ysize, 1, gdal.GDT_Float32) # 创建一个一波段的数据框架
out_band1 = out_dataset.GetRasterBand(1)
out_band1.WriteArray(image_gray) out_dataset.SetGeoTransform(geotransform) # 写入仿射变换
out_dataset.SetProjection(projection)
return outfile if __name__ == '__main__':
mask = r"F:\algorithm\算法练习\3_cut.tif"
out = r"F:\algorithm\算法练习"
img=tif_jpg(mask).astype(np.uint8)
gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
seg_data = threshTwoPeaks(gray_img)
write_tiff(mask, seg_data , out)

python实现遥感图像阈值分割的更多相关文章

  1. 【Keras】基于SegNet和U-Net的遥感图像语义分割

    上两个月参加了个比赛,做的是对遥感高清图像做语义分割,美其名曰"天空之眼".这两周数据挖掘课期末project我们组选的课题也是遥感图像的语义分割,所以刚好又把前段时间做的成果重新 ...

  2. ostu进行遥感图像的分割

    城市地区道路网的简单的阈值分割.采用的是单ostu(最佳阈值分割)算法,废话少说,如果不太清楚该算法,请参考文献[1]中的图像分割这一章的介绍.程序直接运行的效果如下.

  3. python数字图像处理(11):图像自动阈值分割

    图像阈值分割是一种广泛应用的分割技术,利用图像中要提取的目标区域与其背景在灰度特性上的差异,把图像看作具有不同灰度级的两类区域(目标区域和背景区域)的组合,选取一个比较合理的阈值,以确定图像中每个像素 ...

  4. 使用Keras基于RCNN类模型的卫星/遥感地图图像语义分割

    遥感数据集 1. UC Merced Land-Use Data Set 图像像素大小为256*256,总包含21类场景图像,每一类有100张,共2100张. http://weegee.vision ...

  5. 七种常见阈值分割代码(Otsu、最大熵、迭代法、自适应阀值、手动、迭代法、基本全局阈值法)

    http://blog.csdn.net/xw20084898/article/details/17564957 一.工具:VC+OpenCV 二.语言:C++ 三.原理 otsu法(最大类间方差法, ...

  6. 【转】七种常见阈值分割代码(Otsu、最大熵、迭代法、自适应阀值、手动、迭代法、基本全局阈值法)

    http://blog.csdn.net/xw20084898/article/details/17564957 一.工具:VC+OpenCV 二.语言:C++ 三.原理 otsu法(最大类间方差法, ...

  7. 【图像算法】七种常见阈值分割代码(Otsu、最大熵、迭代法、自适应阀值、手动、迭代法、基本全局阈值法)

    图像算法:图像阈值分割 SkySeraph Dec 21st 2010  HQU Email:zgzhaobo@gmail.com    QQ:452728574 Latest Modified Da ...

  8. 第十四节,OpenCV学习(三)图像的阈值分割

    图像的阈值处理 图像的阈值分割:图像的二值化(Binarization) 阈值分割法的特点是:适用于目标与背景灰度有较强对比的情况,重要的是背景或物体的灰度比较单一,而且总可以得到封闭且连通区域的边界 ...

  9. opencv学习笔记3——图像缩放,翻转和阈值分割

    #图像的缩放操作 #cv.resize(src,dsize,dst=None,,fx=None,fy=None,interpolation=None) #src->原图像,dsize->目 ...

随机推荐

  1. nfs(2049)未授权访问

    apt install nfs-common 安装nfs客户端 showmount -e 192.168.244.128 查看nfs服务器上的共享目录 /666/share               ...

  2. SoundPool概率性无声问题

    public class SoundManager { private static SoundManager instance; private SoundPool mSoundPool; priv ...

  3. Mariadb常用管理操作

    一 Mariadb常用管理操作 纯干货,没有一点废话,全是使用频率最高和常用的操作,运维必不可少的基础资料. 1.1 创建数据库 >create database <db_name> ...

  4. 控制流程之if判断与while、for循环

    一.if判断 1.什么是if判断? 接收用户输入的名字 接受用户输入的密码 如果用户输入的名字=正确的名字 并且 用户输入的密码=正确的密码 告诉用户登录成功 否则, 告诉用户登录失败 2.为何要有i ...

  5. 还怕问源码?Github上神级Android三方源码解析手册,已有7.6 KStar

    或许对于许多Android开发者来说,所谓的Android工程师的工作"不过就是用XML实现设计师的美术图,用JSON解析服务器的数据,再把数据显示到界面上"就好了,源码什么的,看 ...

  6. Tengine2.3+openssl1.1.1支持TLS1.3

    安装包下载: openssl1.1.1 链接:https://pan.baidu.com/s/1-qCDhkLtlkT0fdwKdVuh2g 提取码:0ncc pcre3.2.1 链接:https:/ ...

  7. Golang语言系列-04-运算符

    运算符 Go语言内置的运算符有 算术运算符 关系运算符 逻辑运算符 位运算符 赋值运算符 算术运算符 package main import "fmt" func main() { ...

  8. 一种简易但设计全面的ID生成器思考

    分布式系统中,全局唯一 ID 的生成是一个老生常谈但是非常重要的话题.随着技术的不断成熟,大家的分布式全局唯一 ID 设计与生成方案趋向于趋势递增的 ID,这篇文章将结合我们系统中的 ID 针对实际业 ...

  9. Spring系列之多个数据源配置

    前言 在上篇文章讲到了如何配置单数据源,但是在实际场景中,会有需要配置多个数据源的场景,比如说,我们在支付系统中,单笔操作(包含查询.插入.新增)中需要操作主库,在批量查询或者对账单查询等对实时性要求 ...

  10. SQL 练习3

    查询存在" 01 "课程,可能不存在" 02 "课程的情况(不存在时显示为 null ) SELECT * FROM (SELECT * FROM SC WHE ...