51nod1089 最长回文子串 manacher算法
0. 问题定义
最长回文子串问题:给定一个字符串,求它的最长回文子串长度。
如果一个字符串正着读和反着读是一样的,那它就是回文串。下面是一些回文串的实例:
12321 a aba abba aaaa tattarrattat(牛津英语词典中最长的回文单词)
1. Brute-force 解法
对于最长回文子串问题,最简单粗暴的办法是:找到字符串的所有子串,遍历每一个子串以验证它们是否为回文串。一个子串由子串的起点和终点确定,因此对于一个长度为n的字符串,共有n^2个子串。这些子串的平均长度大约是n/2,因此这个解法的时间复杂度是O(n^3)。
2. 改进的方法
显然所有的回文串都是对称的。长度为奇数回文串以最中间字符的位置为对称轴左右对称,而长度为偶数的回文串的对称轴在中间两个字符之间的空隙。可否利用这种对称性来提高算法效率呢?答案是肯定的。我们知道整个字符串中的所有字符,以及字符间的空隙,都可能是某个回文子串的对称轴位置。可以遍历这些位置,在每个位置上同时向左和向右扩展,直到左右两边的字符不同,或者达到边界。对于一个长度为n的字符串,这样的位置一共有n+n-1=2n-1个,在每个位置上平均大约要进行n/4次字符比较,于是此算法的时间复杂度是O(n^2)。
3. Manacher 算法
对于一个比较长的字符串,O(n^2)的时间复杂度是难以接受的。Can we do better?
先来看看解法2存在的缺陷。
1) 由于回文串长度的奇偶性造成了不同性质的对称轴位置,解法2要对两种情况分别处理;
2) 很多子串被重复多次访问,造成较差的时间效率。
缺陷2)可以通过这个直观的小体现:
char: a b a b a
i : 0 1 2 3 4
当i==1,和i==2时,左边的子串aba分别被遍历了一次。
如果我们能改善解法2的不足,就很有希望能提高算法的效率。Manacher正是针对这些问题改进算法。
(1) 解决长度奇偶性带来的对称轴位置问题
Manacher算法首先对字符串做一个预处理,在所有的空隙位置(包括首尾)插入同样的符号,要求这个符号是不会在原串中出现的。这样会使得所有的串都是奇数长度的。以插入#号为例:
aba ———> #a#b#a#
abba ———> #a#b#b#a#
插入的是同样的符号,且符号不存在于原串,因此子串的回文性不受影响,原来是回文的串,插完之后还是回文的,原来不是回文的,依然不会是回文。
(2) 解决重复访问的问题
我们把一个回文串中最左或最右位置的字符与其对称轴的距离称为回文半径。Manacher定义了一个回文半径数组RL,用RL[i]表示以第i个字符为对称轴的回文串的回文半径。我们一般对字符串从左往右处理,因此这里定义RL[i]为第i个字符为对称轴的回文串的最右一个字符与字符i的距离。对于上面插入分隔符之后的两个串,可以得到RL数组:
char: # a # b # a #
RL : 1 2 1 4 1 2 1
RL-1: 0 1 0 3 0 1 0
i : 0 1 2 3 4 5 6
char: # a # b # b # a #
RL : 1 2 1 2 5 2 1 2 1
RL-1: 0 1 0 1 4 1 0 1 0
i : 0 1 2 3 4 5 6 7 8
上面我们还求了一下RL[i]-1。通过观察可以发现,RL[i]-1的值,正是在原本那个没有插入过分隔符的串中,以位置i为对称轴的最长回文串的长度。那么只要我们求出了RL数组,就能得到最长回文子串的长度。
于是问题变成了,怎样高效地求的RL数组。基本思路是利用回文串的对称性,扩展回文串。
我们再引入一个辅助变量MaxRight,表示当前访问到的所有回文子串,所能触及的最右一个字符的位置。另外还要记录下MaxRight对应的回文串的对称轴所在的位置,记为pos,它们的位置关系如下。
我们从左往右地访问字符串来求RL,假设当前访问到的位置为i,即要求RL[i],在对应上图,i必然是在po右边的(obviously)。但我们更关注的是,i是在MaxRight的左边还是右边。我们分情况来讨论。
1)当i在MaxRight的左边
情况1)可以用下图来刻画:
我们知道,图中两个红色块之间(包括红色块)的串是回文的;并且以i为对称轴的回文串,是与红色块间的回文串有所重叠的。我们找到i关于pos的对称位置j,这个j对应的RL[j]我们是已经算过的。根据回文串的对称性,以i为对称轴的回文串和以j为对称轴的回文串,有一部分是相同的。这里又有两种细分的情况。
以
j为对称轴的回文串比较短,短到像下图这样。
这时我们知道RL[i]至少不会小于RL[j],并且已经知道了部分的以i为中心的回文串,于是可以令RL[i]=RL[j]。但是以i为对称轴的回文串可能实际上更长,因此我们试着以i为对称轴,继续往左右两边扩展,直到左右两边字符不同,或者到达边界。
以
j为对称轴的回文串很长,这么长:
这时,我们只能确定,两条蓝线之间的部分(即不超过MaxRight的部分)是回文的,于是从这个长度开始,尝试以i为中心向左右两边扩展,,直到左右两边字符不同,或者到达边界。
不论以上哪种情况,之后都要尝试更新MaxRight和pos,因为有可能得到更大的MaxRight。
具体操作如下:
step 1: 令RL[i]=min(RL[2*pos-i], MaxRight-i)
step 2: 以i为中心扩展回文串,直到左右两边字符不同,或者到达边界。
step 3: 更新MaxRight和pos
2)当i在MaxRight的右边
遇到这种情况,说明以i为对称轴的回文串还没有任何一个部分被访问过,于是只能从i的左右两边开始尝试扩展了,当左右两边字符不同,或者到达字符串边界时停止。然后更新MaxRight和pos。
实现的时候要注意不要漏掉对称位置延长的长度不超过当前最右的边界时,我们仍然应该尝试去往左右两边扩展
注意我的初始化细节...
当我们能找到i的对称位置时,那么i的左半部分一定能找全,画图等价代换即可
那么我们只关心i延长 RL[对称位置]的距离之后,超不超边界,超了边界,从零开始扩展
不超边界,那么我们就有了左右扩展RL[对称位置]的回文串,轻易能构造出以i为中心更长的回文串
所以我们仍然选择尝试左右扩展,但是我们这次直接从RL[对称位置]的长度开始扩展,节省了很多计算量
实现代码
#include <stdio.h>
#include <algorithm>
#include <string.h>
using namespace std; const int maxn=1e5+7;
char s[maxn],t[maxn*3];
int RL[maxn*3],cnt;
void manacher(){
int pos,mxright,i,ans=0;
for(i=0,pos=-1,mxright=-1;i<cnt;++i){
if(i>mxright){
pos=i;
while(i-RL[i]>=0&&i+RL[i]<cnt&&t[i-RL[i]]==t[i+RL[i]]) RL[i]++;
mxright=i+RL[i]-1;
ans=max(ans,RL[i]-1);
}
else{
int op=2*pos-i;
if(i+RL[op]-1>mxright){
while(i-RL[i]>=0&&i+RL[i]<cnt&&t[i-RL[i]]==t[i+RL[i]]) RL[i]++;
ans=max(ans,RL[i]-1);
if(i+RL[i]-1>mxright){
pos=i;mxright=i+RL[i];
}
}
else{
RL[i]=RL[op];
while(i-RL[i]>=0&&i+RL[i]<cnt&&t[i-RL[i]]==t[i+RL[i]]) RL[i]++;
ans=max(ans,RL[i]-1);
if(i+RL[i]-1>mxright){
pos=i;mxright=i+RL[i];
}
}
}
}
printf("%d\n",ans);
}
int main(){
scanf("%s",s);
int len=strlen(s),j=0;
while(j<len){
if((cnt+1)&1)t[cnt++]='#';
else t[cnt++]=s[j++];
}
if(t[cnt-1]!='#') t[cnt++]='#';
manacher();
return 0;
}
51nod1089 最长回文子串 manacher算法的更多相关文章
- 九度OJ 1528 最长回文子串 -- Manacher算法
题目地址:http://ac.jobdu.com/problem.php?pid=1528 题目描述: 回文串就是一个正读和反读都一样的字符串,比如"level"或者"n ...
- lintcode最长回文子串(Manacher算法)
题目来自lintcode, 链接:http://www.lintcode.com/zh-cn/problem/longest-palindromic-substring/ 最长回文子串 给出一个字符串 ...
- 最长回文子串—Manacher 算法 及 python实现
最长回文子串问题:给定一个字符串,求它的最长回文子串长度.如果一个字符串正着读和反着读是一样的,那它就是回文串. 给定一个字符串,求它最长的回文子串长度,例如输入字符串'35534321',它的最 ...
- hihocoder #1032 : 最长回文子串 Manacher算法
题目链接: https://hihocoder.com/problemset/problem/1032?sid=868170 最长回文子串 时间限制:1000ms内存限制:64MB 问题描述 小Hi和 ...
- 5. Longest Palindromic Substring(最长回文子串 manacher 算法/ DP动态规划)
Given a string s, find the longest palindromic substring in s. You may assume that the maximum lengt ...
- HiHo 1032 最长回文子串 (Manacher算法求解)
/** * 求解最长回文字串,Manacher算法o(n)求解最长回文子串问题 **/ #include<cstdio> #include<cstdlib> #include& ...
- hihoCoder #1032 : 最长回文子串 [ Manacher算法--O(n)回文子串算法 ]
传送门 #1032 : 最长回文子串 时间限制:1000ms 单点时限:1000ms 内存限制:64MB 描述 小Hi和小Ho是一对好朋友,出生在信息化社会的他们对编程产生了莫大的兴趣,他们约定好互相 ...
- 最长回文子串Manacher算法模板
Manacher算法能够在O(N)的时间复杂度内得到一个字符串以任意位置为中心的回文子串.其算法的基本原理就是利用已知回文串的左半部分来推导右半部分. 首先,在字符串s中,用rad[i]表示第i个字符 ...
- 求最长回文子串——Manacher算法
回文串包括奇数长的和偶数长的,一般求的时候都要分情况讨论,这个算法做了个简单的处理把奇偶情况统一了.算法的基本思路是这样的,把原串每个字符中间用一个串中没出现过的字符分隔开来(统一奇偶),用一个数组p ...
随机推荐
- Java自学笔记之学生管理系统
实现:学生管理系统,实现学生信息的添加.修改.查询和删除功能 涉及:集合的基础知识(集合遍历,值得获取与替换,set/get方法) 代码如下: Student文件 1 package Demo_120 ...
- PAT练习num4-D进制的A+B
输入两个非负 10 进制整数 A 和 B (≤),输出 A+B 的 D (1)进制数. 输入格式: 输入在一行中依次给出 3 个整数 A.B 和 D. 输出格式: 输出 A+B 的 D 进制数. 输入 ...
- Redis-第五章节-8种数据类型
目录 一.Redis对key的操作 二.五种数据类型 String类型 List(集合) Set(集合) Hash(哈希) Zset(有序集合) 三.三种特殊数据类型 geospatial(地理位置) ...
- Docker数据目录迁移解决方案
场景 在docker的使用中随着下载镜像越来越多,构建镜像.运行容器越来越多, 数据目录必然会逐渐增大:当所有docker镜像.容器对磁盘的使用达到上限时,就需要对数据目录进行迁移. 如何避免: 1. ...
- k8s之PV、PVC、StorageClass详解
导读 上一篇写了共享存储的概述以及一个简单的案例演示.这一篇就写一下PV和PVC. PV是对底层网络共享存储的抽象,将共享存储定义为一种"资源",比如Node也是容器应用可以消费的 ...
- Markdown 编辑器+同步预览+文件笔记管理+静态博客 metadata 管理
Leanote: 1. 笔记管理, 支持富文本, markdown, 写作模式.... 编辑器绝对好用. 另外特意为coder制作了一个贴代码的插件, 真是太贴心(因为作者也是coder) 2. 博客 ...
- 对于Spring MVC 拦截器的一些了解
Spring MVC 拦截器的执行顺序 应用场景 假设请求 localhost:8080/ 则要求直接重定向到 localhost:8080/login ; 定义拦截器顺序 permission lo ...
- gRPC设计动机和原则
https://mp.weixin.qq.com/s/NMIIa0W722zo_AxCqASc0g TiDB 与 gRPC 的那点事儿 黄东旭 PingCAP 2017-08-10 gRPC 背景 ...
- HA工作机制
HA工作机制 HA:高可用(7*24小时不中断服务) 主要的HA是针对集群的master节点的,即namenode和resourcemanager,毕竟DataNode挂掉之后影响 不是特别大,重启就 ...
- TCP报文段的首部格式 20字节的固定首部
<---- IP首部 TCP首部 TCP报文段的数据部分 <---- 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 ...