Prometheus+Grafana+Alertmanager搭建全方位的监控告警系统
prometheus安装和配置
prometheus组件介绍
1.Prometheus Server: 用于收集和存储时间序列数据。
2.Client Library: 客户端库,检测应用程序代码,当Prometheus抓取实例的HTTP端点时,客户端库会将所有跟踪的metrics指标的当前状态发送到prometheus server端。
3.Exporters: prometheus支持多种exporter,通过exporter可以采集metrics数据,然后发送到prometheus server端
4.Alertmanager: 从 Prometheus server 端接收到 alerts 后,会进行去重,分组,并路由到相应的接收方,发出报警,常见的接收方式有:电子邮件,微信,钉钉, slack等。
5.Grafana:监控仪表盘
6.pushgateway: 各个目标主机可上报数据到pushgatewy,然后prometheus server统一从pushgateway拉取数据。
prometheus架构图

从上图可发现,Prometheus整个生态圈组成主要包括prometheus server,Exporter,pushgateway,alertmanager,grafana,Web ui界面,Prometheus server由三个部分组成,Retrieval,Storage,PromQL 。
- retrieval负责在活跃的target主机上抓取监控指标数据
- storage主要是把采集到的数据存储到磁盘中
- promQL是prometheus提供的查询语言模块
prometheus工作流程
- Prometheus server可定期从活跃的(up)目标主机上(target)拉取监控指标数据,目标主机的监控数据可通过配置静态job或者服务发现的方式被prometheus server采集到,这种方式默认的pull方式拉取指标;也可通过pushgateway把采集的数据上报到prometheus server中;还可通过一些组件自带的exporter采集相应组件的数据;
- Prometheus server把采集到的监控指标数据保存到本地磁盘或者数据库;
- Prometheus采集的监控指标数据按时间序列存储,通过配置报警规则,把触发的报警发送到alertmanager
- Alertmanager通过配置报警接收方,发送报警到邮件,微信或者钉钉等
- Prometheus 自带的web ui界面提供PromQL查询语言,可查询监控数据
- Grafana可接入prometheus数据源,把监控数据以图形化形式展示出
安装node-exporter组件
 node-exporter是采集机器(物理机、虚拟机、云主机等)的监控指标数据,能够采集到的指标包括CPU, 内存,磁盘,网络,文件数等信息。
实验环境
 一个master节点,一个node节点。
在master节点操作
cat >node-export.yaml  <<EOF
apiVersion: apps/v1
kind: DaemonSet
metadata:
  name: node-exporter
  namespace: monitor-sa
  labels:
    name: node-exporter
spec:
  selector:
    matchLabels:
     name: node-exporter
  template:
    metadata:
      labels:
        name: node-exporter
    spec:
      hostPID: true
      hostIPC: true
      hostNetwork: true
      containers:
      - name: node-exporter
        image: prom/node-exporter:v0.16.0
        ports:
        - containerPort: 9100
        resources:
          requests:
            cpu: 0.15
        securityContext:
          privileged: true
        args:
        - --path.procfs
        - /host/proc
        - --path.sysfs
        - /host/sys
        - --collector.filesystem.ignored-mount-points
        - '"^/(sys|proc|dev|host|etc)($|/)"'
        volumeMounts:
        - name: dev
          mountPath: /host/dev
        - name: proc
          mountPath: /host/proc
        - name: sys
          mountPath: /host/sys
        - name: rootfs
          mountPath: /rootfs
      tolerations:
      - key: "node-role.kubernetes.io/master"
        operator: "Exists"
        effect: "NoSchedule"
      volumes:
        - name: proc
          hostPath:
            path: /proc
        - name: dev
          hostPath:
            path: /dev
        - name: sys
          hostPath:
            path: /sys
        - name: rootfs
          hostPath:
            path: /
EOF
通过node-exporter采集数据
curl http://主机ip:9100/metrics
在k8s集群中部署promethues
- 创建namespace、sa账号,在k8s集群的master节点操作 - kubectl create ns monitor-sa
 kubectl create serviceaccount monitor -n monitor-sa
 #把sa账号monitor通过clusterrolebing绑定到clusterrole上
 kubectl create clusterrolebinding moniror-clusterrolebinding -n monitor-sa --clusterrole=cluster-admin --serviceaccount=monitor-sa:monitor
 
- 创建数据目录 - # 在k8s集群的任何一个node节点操作,本实验在node1上操作
 mkdir /data
 chmod 777 /data/
 
- 安装prometheus,在master节点操作 - #创建一个configmap存储卷,用来存放prometheus配置信息
 #prometheus-cfg.yaml
 kind: ConfigMap
 apiVersion: v1
 metadata:
 labels:
 app: prometheus
 name: prometheus-config
 namespace: monitor-sa
 data:
 prometheus.yml: |
 global:
 scrape_interval: 15s
 scrape_timeout: 10s
 evaluation_interval: 1m
 scrape_configs:
 - job_name: 'kubernetes-node'
 kubernetes_sd_configs:
 - role: node
 relabel_configs:
 - source_labels: [__address__]
 regex: '(.*):10250'
 replacement: ':9100'
 target_label: __address__
 action: replace
 - action: labelmap
 regex: __meta_kubernetes_node_label_(.+)
 - job_name: 'kubernetes-node-cadvisor'
 kubernetes_sd_configs:
 - role: node
 scheme: https
 tls_config:
 ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt
 bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token
 relabel_configs:
 - action: labelmap
 regex: __meta_kubernetes_node_label_(.+)
 - target_label: __address__
 replacement: kubernetes.default.svc:443
 - source_labels: [__meta_kubernetes_node_name]
 regex: (.+)
 target_label: __metrics_path__
 replacement: /api/v1/nodes//proxy/metrics/cadvisor
 - job_name: 'kubernetes-apiserver'
 kubernetes_sd_configs:
 - role: endpoints
 scheme: https
 tls_config:
 ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt
 bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token
 relabel_configs:
 - source_labels: [__meta_kubernetes_namespace, __meta_kubernetes_service_name, __meta_kubernetes_endpoint_port_name]
 action: keep
 regex: default;kubernetes;https
 - job_name: 'kubernetes-service-endpoints'
 kubernetes_sd_configs:
 - role: endpoints
 relabel_configs:
 - source_labels: [__meta_kubernetes_service_annotation_prometheus_io_scrape]
 action: keep
 regex: true
 - source_labels: [__meta_kubernetes_service_annotation_prometheus_io_scheme]
 action: replace
 target_label: __scheme__
 regex: (https?)
 - source_labels: [__meta_kubernetes_service_annotation_prometheus_io_path]
 action: replace
 target_label: __metrics_path__
 regex: (.+)
 - source_labels: [__address__, __meta_kubernetes_service_annotation_prometheus_io_port]
 action: replace
 target_label: __address__
 regex: ([^:]+)(?::\d+)?;(\d+)
 replacement: :
 - action: labelmap
 regex: __meta_kubernetes_service_label_(.+)
 - source_labels: [__meta_kubernetes_namespace]
 action: replace
 target_label: kubernetes_namespace
 - source_labels: [__meta_kubernetes_service_name]
 action: replace
 target_label: kubernetes_name
 ---
 #通过deployment部署prometheus
 #prometheus-deploy.yaml
 apiVersion: apps/v1
 kind: Deployment
 metadata:
 name: prometheus-server
 namespace: monitor-sa
 labels:
 app: prometheus
 spec:
 replicas: 1
 selector:
 matchLabels:
 app: prometheus
 component: server
 template:
 metadata:
 labels:
 app: prometheus
 component: server
 annotations:
 prometheus.io/scrape: 'false'
 spec:
 nodeName: node1
 serviceAccountName: monitor
 containers:
 - name: prometheus
 image: prom/prometheus:v2.2.1
 imagePullPolicy: IfNotPresent
 command:
 - prometheus
 - --config.file=/etc/prometheus/prometheus.yml
 - --storage.tsdb.path=/prometheus
 - --storage.tsdb.retention=720h
 ports:
 - containerPort: 9090
 protocol: TCP
 volumeMounts:
 - mountPath: /etc/prometheus/prometheus.yml
 name: prometheus-config
 subPath: prometheus.yml
 - mountPath: /prometheus/
 name: prometheus-storage-volume
 volumes:
 - name: prometheus-config
 configMap:
 name: prometheus-config
 items:
 - key: prometheus.yml
 path: prometheus.yml
 mode: 0644
 - name: prometheus-storage-volume
 hostPath:
 path: /data
 type: Directory
 - 注意:通过上面命令生成的promtheus-cfg.yaml文件会有一些问题,$1和$2这种变量在文件里没有,需要在k8s的master1节点打开promtheus-cfg.yaml文件,手动把$1和$2这种变量写进文件里,promtheus-cfg.yaml文件需要手动修改部分如下: - 22行的replacement: ':9100'变成replacement: '${1}:9100'
 42行的replacement: /api/v1/nodes//proxy/metrics/cadvisor变成
 replacement: /api/v1/nodes/${1}/proxy/metrics/cadvisor
 73行的replacement: 变成replacement: $1:$2
 - 给prometheus pod 创建一个service - cat > prometheus-svc.yaml << EOF
 ---
 apiVersion: v1
 kind: Service
 metadata:
 name: prometheus
 namespace: monitor-sa
 labels:
 app: prometheus
 spec:
 type: NodePort
 ports:
 - port: 9090
 targetPort: 9090
 protocol: TCP
 selector:
 app: prometheus
 component: server
 EOF
 - #查看service在物理机映射的端口
 kubectl get svc -n monitor-sa #访问prometheus web ui 界面
 http://172.16.9.3:30426/graph
 #点击页面的Status->Targets,可看到如下,说明我们配置的服务发现可以正常采集数据
 - prometheus热更新- #为了每次修改配置文件可以热加载prometheus,也就是不停止prometheus,就可以使配置生效,如修改prometheus-cfg.yaml,想要使配置生效可用如下热加载命令: 
 curl -X POST http://10.244.1.125:9090/-/reload- #10.244.1.66是prometheus的pod的ip地址 - #热加载速度比较慢,可以暴力重启prometheus,如修改上面的prometheus-cfg.yaml文件之后,可执行如下强制删除: - kubectl delete -f prometheus-cfg.yaml - kubectl delete -f prometheus-deploy.yaml - 然后再通过apply更新: - kubectl apply -f prometheus-cfg.yaml - kubectl apply -f prometheus-deploy.yaml - 注意: - 线上最好热加载,暴力删除可能造成监控数据的丢失 
Grafana安装和配置
下载安装Grafana需要的镜像
上传heapster-grafana-amd64_v5_0_4.tar.gz镜像到k8s的各个master节点和k8s的各个node节点,然后在各个节点手动解压:
docker load -i heapster-grafana-amd64_v5_0_4.tar.gz
镜像所在的百度网盘地址如下:
链接:https://pan.baidu.com/s/1TmVGKxde_cEYrbjiETboEA 提取码:052u
在k8s的master节点创建grafana.yaml
cat  >grafana.yaml <<  EOF
apiVersion: apps/v1
kind: Deployment
metadata:
  name: monitoring-grafana
  namespace: kube-system
spec:
  replicas: 1
  selector:
    matchLabels:
      task: monitoring
      k8s-app: grafana
  template:
    metadata:
      labels:
        task: monitoring
        k8s-app: grafana
    spec:
      containers:
      - name: grafana
        image: k8s.gcr.io/heapster-grafana-amd64:v5.0.4
        ports:
        - containerPort: 3000
          protocol: TCP
        volumeMounts:
        - mountPath: /etc/ssl/certs
          name: ca-certificates
          readOnly: true
        - mountPath: /var
          name: grafana-storage
        env:
        - name: INFLUXDB_HOST
          value: monitoring-influxdb
        - name: GF_SERVER_HTTP_PORT
          value: "3000"
          # The following env variables are required to make Grafana accessible via
          # the kubernetes api-server proxy. On production clusters, we recommend
          # removing these env variables, setup auth for grafana, and expose the grafana
          # service using a LoadBalancer or a public IP.
        - name: GF_AUTH_BASIC_ENABLED
          value: "false"
        - name: GF_AUTH_ANONYMOUS_ENABLED
          value: "true"
        - name: GF_AUTH_ANONYMOUS_ORG_ROLE
          value: Admin
        - name: GF_SERVER_ROOT_URL
          # If you're only using the API Server proxy, set this value instead:
          # value: /api/v1/namespaces/kube-system/services/monitoring-grafana/proxy
          value: /
      volumes:
      - name: ca-certificates
        hostPath:
          path: /etc/ssl/certs
      - name: grafana-storage
        emptyDir: {}
---
apiVersion: v1
kind: Service
metadata:
  labels:
    # For use as a Cluster add-on (https://github.com/kubernetes/kubernetes/tree/master/cluster/addons)
    # If you are NOT using this as an addon, you should comment out this line.
    kubernetes.io/cluster-service: 'true'
    kubernetes.io/name: monitoring-grafana
  name: monitoring-grafana
  namespace: kube-system
spec:
  # In a production setup, we recommend accessing Grafana through an external Loadbalancer
  # or through a public IP.
  # type: LoadBalancer
  # You could also use NodePort to expose the service at a randomly-generated port
  # type: NodePort
  ports:
  - port: 80
    targetPort: 3000
  selector:
    k8s-app: grafana
  type: NodePort
EOF
通过kubectl get sac -n cube-system看到grafana暴漏的苏主机端口是32351,我们可以访问k8s集群的master节点ip:32351即可访问grafana的web界面
Grafana界面接入prometheus数据源
- 登录Grafana,172.16.9.3:32351,账号密码都是admin 
- 配置grafana界面,选择create your first data source - Name:Prometheus
 Type:Prometheus
 HTTP出的URL:http://prometheus.monitor-sa.svc:9090
 - 点击左下角Save&Test,出现Data source is working,说明prometheus数据源成功的被grafana接入了。 - 导入监控模板,可在如下链接搜索 
 https://grafana.com/dashboards?dataSource=prometheus&search=kubernetes
 也可直接导入node_exporter.json监控模板,这个可以把node节点指标显示出来,node_exporter.json在百度网盘地址如下:- 链接:https://pan.baidu.com/s/1vF1kAMRbxQkUGPlZt91MWg 提取码:kyd6
 - 还可直接导入docker_rev1.json,可以把容器相关的数据展示出来 
 docker_rev1.json在百度网盘地址如下- 链接:https://pan.baidu.com/s/17o_nja5N2R-g9g5PkJ3aFA 提取码:vinv
 - 导入监控模版步骤:点击左侧+号下面的Import,选择Upload json file,选择一个本地的json文件即可。 
安装配置kube-state-metrics组件
 kube-state-metrics通过监听API Server生成有关资源对象的状态指标,比如Deployment、Node、Pod,需要注意的是kube-state-metrics只是简单的提供一个metrics数据,并不会存储这些指标数据,所以我们可以使用Prometheus来抓取这些数据然后存储,主要关注的是业务相关的一些元数据,比如Deployment、Pod、副本状态等;调度了多少个replicas?现在可用的有几个?多少个Pod是running/stopped/terminated状态?Pod重启了多少次?我有多少job在运行中。
安装kube-state-metrics组件
- 创建sa,并对sa授权,在master节点操作 - cat > kube-state-metrics-rbac.yaml <<EOF
 ---
 apiVersion: v1
 kind: ServiceAccount
 metadata:
 name: kube-state-metrics
 namespace: kube-system
 ---
 apiVersion: rbac.authorization.k8s.io/v1
 kind: ClusterRole
 metadata:
 name: kube-state-metrics
 rules:
 - apiGroups: [""]
 resources: ["nodes", "pods", "services", "resourcequotas", "replicationcontrollers", "limitranges", "persistentvolumeclaims", "persistentvolumes", "namespaces", "endpoints"]
 verbs: ["list", "watch"]
 - apiGroups: ["extensions"]
 resources: ["daemonsets", "deployments", "replicasets"]
 verbs: ["list", "watch"]
 - apiGroups: ["apps"]
 resources: ["statefulsets"]
 verbs: ["list", "watch"]
 - apiGroups: ["batch"]
 resources: ["cronjobs", "jobs"]
 verbs: ["list", "watch"]
 - apiGroups: ["autoscaling"]
 resources: ["horizontalpodautoscalers"]
 verbs: ["list", "watch"]
 ---
 apiVersion: rbac.authorization.k8s.io/v1
 kind: ClusterRoleBinding
 metadata:
 name: kube-state-metrics
 roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole
 name: kube-state-metrics
 subjects:
 - kind: ServiceAccount
 name: kube-state-metrics
 namespace: kube-system
 EOF
 
- 安装cube-state-metrics组件,在master节点操作 - cat > kube-state-metrics-deploy.yaml <<EOF
 apiVersion: apps/v1
 kind: Deployment
 metadata:
 name: kube-state-metrics
 namespace: kube-system
 spec:
 replicas: 1
 selector:
 matchLabels:
 app: kube-state-metrics
 template:
 metadata:
 labels:
 app: kube-state-metrics
 spec:
 serviceAccountName: kube-state-metrics
 containers:
 - name: kube-state-metrics
 # image: gcr.io/google_containers/kube-state-metrics-amd64:v1.3.1
 image: quay.io/coreos/kube-state-metrics:v1.9.0
 ports:
 - containerPort: 8080
 EOF
 
- 创建service,在master节点操作 - cat >kube-state-metrics-svc.yaml <<EOF
 apiVersion: v1
 kind: Service
 metadata:
 annotations:
 prometheus.io/scrape: 'true'
 name: kube-state-metrics
 namespace: kube-system
 labels:
 app: kube-state-metrics
 spec:
 ports:
 - name: kube-state-metrics
 port: 8080
 protocol: TCP
 selector:
 app: kube-state-metrics
 EOF
 - 在Grafana web界面导入kubernetes Cluster和kubernetes cluster monitoring - 链接:https://pan.baidu.com/s/1QAMqT8scsXx-lzEPI6MPgA
 提取码:i4yd
 
安装和配置Alertmanager-发送报警到qq邮箱
在k8s的master节点创建alertmanager-cm.yaml文件
cat >alertmanager-cm.yaml <<EOF
kind: ConfigMap
apiVersion: v1
metadata:
  name: alertmanager
  namespace: monitor-sa
data:
  alertmanager.yml: |-
    global:
      resolve_timeout: 1m
      smtp_smarthost: 'smtp.163.com:25'
      smtp_from: '15011572657@163.com'
      smtp_auth_username: '15011572657'
      smtp_auth_password: 'BDBPRMLNZGKWRFJP'
      smtp_require_tls: false
    route:
      group_by: [alertname]
      group_wait: 10s
      group_interval: 10s
      repeat_interval: 10m
      receiver: default-receiver
    receivers:
    - name: 'default-receiver'
      email_configs:
      - to: 'y1486170457@qq.com'
        send_resolved: true
EOF
Alertmanager配置文件解释说明:
smtp_smarthost: 'smtp.163.com:25'
#用于发送邮件的邮箱的SMTP服务器地址+端口
smtp_from: '15011572657@163.com'
#这是指定从哪个邮箱发送报警
smtp_auth_username: '15011572657'
#这是发送邮箱的认证用户,不是邮箱名
smtp_auth_password: 'BDBPRMLNZGKWRFJP'
#这是发送邮箱的授权码而不是登录密码
email_configs:
   - to: 'y1486170457@qq.com'
#to后面指定发送到哪个邮箱,我发送到我的qq邮箱,大家需要写自己的邮箱地址,不应该跟smtp_from的邮箱名字重复
在master节点重新生成prometheus-cfg.yaml文件
kind: ConfigMap
apiVersion: v1
metadata:
  labels:
    app: prometheus
  name: prometheus-config
  namespace: monitor-sa
data:
  prometheus.yml: |
    rule_files:
    - /etc/prometheus/rules.yml
    alerting:
      alertmanagers:
      - static_configs:
        - targets: ["localhost:9093"]
    global:
      scrape_interval: 15s
      scrape_timeout: 10s
      evaluation_interval: 1m
    scrape_configs:
    - job_name: 'kubernetes-node'
      kubernetes_sd_configs:
      - role: node
      relabel_configs:
      - source_labels: [__address__]
        regex: '(.*):10250'
        replacement: '${1}:9100'
        target_label: __address__
        action: replace
      - action: labelmap
        regex: __meta_kubernetes_node_label_(.+)
    - job_name: 'kubernetes-node-cadvisor'
      kubernetes_sd_configs:
      - role:  node
      scheme: https
      tls_config:
        ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt
      bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token
      relabel_configs:
      - action: labelmap
        regex: __meta_kubernetes_node_label_(.+)
      - target_label: __address__
        replacement: kubernetes.default.svc:443
      - source_labels: [__meta_kubernetes_node_name]
        regex: (.+)
        target_label: __metrics_path__
        replacement: /api/v1/nodes/${1}/proxy/metrics/cadvisor
    - job_name: 'kubernetes-apiserver'
      kubernetes_sd_configs:
      - role: endpoints
      scheme: https
      tls_config:
        ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt
      bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token
      relabel_configs:
      - source_labels: [__meta_kubernetes_namespace, __meta_kubernetes_service_name, __meta_kubernetes_endpoint_port_name]
        action: keep
        regex: default;kubernetes;https
    - job_name: 'kubernetes-service-endpoints'
      kubernetes_sd_configs:
      - role: endpoints
      relabel_configs:
      - source_labels: [__meta_kubernetes_service_annotation_prometheus_io_scrape]
        action: keep
        regex: true
      - source_labels: [__meta_kubernetes_service_annotation_prometheus_io_scheme]
        action: replace
        target_label: __scheme__
        regex: (https?)
      - source_labels: [__meta_kubernetes_service_annotation_prometheus_io_path]
        action: replace
        target_label: __metrics_path__
        regex: (.+)
      - source_labels: [__address__, __meta_kubernetes_service_annotation_prometheus_io_port]
        action: replace
        target_label: __address__
        regex: ([^:]+)(?::\d+)?;(\d+)
        replacement: $1:$2
      - action: labelmap
        regex: __meta_kubernetes_service_label_(.+)
      - source_labels: [__meta_kubernetes_namespace]
        action: replace
        target_label: kubernetes_namespace
      - source_labels: [__meta_kubernetes_service_name]
        action: replace
        target_label: kubernetes_name
    - job_name: kubernetes-pods
      kubernetes_sd_configs:
      - role: pod
      relabel_configs:
      - action: keep
        regex: true
        source_labels:
        - __meta_kubernetes_pod_annotation_prometheus_io_scrape
      - action: replace
        regex: (.+)
        source_labels:
        - __meta_kubernetes_pod_annotation_prometheus_io_path
        target_label: __metrics_path__
      - action: replace
        regex: ([^:]+)(?::\d+)?;(\d+)
        replacement: $1:$2
        source_labels:
        - __address__
        - __meta_kubernetes_pod_annotation_prometheus_io_port
        target_label: __address__
      - action: labelmap
        regex: __meta_kubernetes_pod_label_(.+)
      - action: replace
        source_labels:
        - __meta_kubernetes_namespace
        target_label: kubernetes_namespace
      - action: replace
        source_labels:
        - __meta_kubernetes_pod_name
        target_label: kubernetes_pod_name
    - job_name: 'kubernetes-schedule'
      scrape_interval: 5s
      static_configs:
      - targets: ['172.16.9.3:10251']
    - job_name: 'kubernetes-controller-manager'
      scrape_interval: 5s
      static_configs:
      - targets: ['172.16.9.3:10252']
    - job_name: 'kubernetes-kube-proxy'
      scrape_interval: 5s
      static_configs:
      - targets: ['172.16.9.3:10249','172.16.9.4:10249']
    - job_name: 'kubernetes-etcd'
      scheme: https
      tls_config:
        ca_file: /var/run/secrets/kubernetes.io/k8s-certs/etcd/ca.crt
        cert_file: /var/run/secrets/kubernetes.io/k8s-certs/etcd/server.crt
        key_file: /var/run/secrets/kubernetes.io/k8s-certs/etcd/server.key
      scrape_interval: 5s
      static_configs:
      - targets: ['172.16.9.3:2379']
  rules.yml: |
    groups:
    - name: example
      rules:
      - alert: kube-proxy的cpu使用率大于80%
        expr: rate(process_cpu_seconds_total{job=~"kubernetes-kube-proxy"}[1m]) * 100 > 80
        for: 2s
        labels:
          severity: warnning
        annotations:
          description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过80%"
      - alert:  kube-proxy的cpu使用率大于90%
        expr: rate(process_cpu_seconds_total{job=~"kubernetes-kube-proxy"}[1m]) * 100 > 90
        for: 2s
        labels:
          severity: critical
        annotations:
          description: "{{$lables.instance}}的{{$labels.job}}组件的cpu使用率超过90%"
      - alert: scheduler的cpu使用率大于80%
        expr: rate(process_cpu_seconds_total{job=~"kubernetes-schedule"}[1m]) * 100 > 80
        for: 2s
        labels:
          severity: warnning
        annotations:
          description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过80%"
      - alert:  scheduler的cpu使用率大于90%
        expr: rate(process_cpu_seconds_total{job=~"kubernetes-schedule"}[1m]) * 100 > 90
        for: 2s
        labels:
          severity: critical
        annotations:
          description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过90%"
      - alert: controller-manager的cpu使用率大于80%
        expr: rate(process_cpu_seconds_total{job=~"kubernetes-controller-manager"}[1m]) * 100 > 80
        for: 2s
        labels:
          severity: warnning
        annotations:
          description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过80%"
      - alert:  controller-manager的cpu使用率大于90%
        expr: rate(process_cpu_seconds_total{job=~"kubernetes-controller-manager"}[1m]) * 100 > 0
        for: 2s
        labels:
          severity: critical
        annotations:
          description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过90%"
      - alert: apiserver的cpu使用率大于80%
        expr: rate(process_cpu_seconds_total{job=~"kubernetes-apiserver"}[1m]) * 100 > 80
        for: 2s
        labels:
          severity: warnning
        annotations:
          description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过80%"
      - alert:  apiserver的cpu使用率大于90%
        expr: rate(process_cpu_seconds_total{job=~"kubernetes-apiserver"}[1m]) * 100 > 90
        for: 2s
        labels:
          severity: critical
        annotations:
          description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过90%"
      - alert: etcd的cpu使用率大于80%
        expr: rate(process_cpu_seconds_total{job=~"kubernetes-etcd"}[1m]) * 100 > 80
        for: 2s
        labels:
          severity: warnning
        annotations:
          description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过80%"
      - alert:  etcd的cpu使用率大于90%
        expr: rate(process_cpu_seconds_total{job=~"kubernetes-etcd"}[1m]) * 100 > 90
        for: 2s
        labels:
          severity: critical
        annotations:
          description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过90%"
      - alert: kube-state-metrics的cpu使用率大于80%
        expr: rate(process_cpu_seconds_total{k8s_app=~"kube-state-metrics"}[1m]) * 100 > 80
        for: 2s
        labels:
          severity: warnning
        annotations:
          description: "{{$labels.instance}}的{{$labels.k8s_app}}组件的cpu使用率超过80%"
          value: "{{ $value }}%"
          threshold: "80%"
      - alert: kube-state-metrics的cpu使用率大于90%
        expr: rate(process_cpu_seconds_total{k8s_app=~"kube-state-metrics"}[1m]) * 100 > 0
        for: 2s
        labels:
          severity: critical
        annotations:
          description: "{{$labels.instance}}的{{$labels.k8s_app}}组件的cpu使用率超过90%"
          value: "{{ $value }}%"
          threshold: "90%"
      - alert: coredns的cpu使用率大于80%
        expr: rate(process_cpu_seconds_total{k8s_app=~"kube-dns"}[1m]) * 100 > 80
        for: 2s
        labels:
          severity: warnning
        annotations:
          description: "{{$labels.instance}}的{{$labels.k8s_app}}组件的cpu使用率超过80%"
          value: "{{ $value }}%"
          threshold: "80%"
      - alert: coredns的cpu使用率大于90%
        expr: rate(process_cpu_seconds_total{k8s_app=~"kube-dns"}[1m]) * 100 > 90
        for: 2s
        labels:
          severity: critical
        annotations:
          description: "{{$labels.instance}}的{{$labels.k8s_app}}组件的cpu使用率超过90%"
          value: "{{ $value }}%"
          threshold: "90%"
      - alert: kube-proxy打开句柄数>600
        expr: process_open_fds{job=~"kubernetes-kube-proxy"}  > 600
        for: 2s
        labels:
          severity: warnning
        annotations:
          description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>600"
          value: "{{ $value }}"
      - alert: kube-proxy打开句柄数>1000
        expr: process_open_fds{job=~"kubernetes-kube-proxy"}  > 1000
        for: 2s
        labels:
          severity: critical
        annotations:
          description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>1000"
          value: "{{ $value }}"
      - alert: kubernetes-schedule打开句柄数>600
        expr: process_open_fds{job=~"kubernetes-schedule"}  > 600
        for: 2s
        labels:
          severity: warnning
        annotations:
          description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>600"
          value: "{{ $value }}"
      - alert: kubernetes-schedule打开句柄数>1000
        expr: process_open_fds{job=~"kubernetes-schedule"}  > 1000
        for: 2s
        labels:
          severity: critical
        annotations:
          description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>1000"
          value: "{{ $value }}"
      - alert: kubernetes-controller-manager打开句柄数>600
        expr: process_open_fds{job=~"kubernetes-controller-manager"}  > 600
        for: 2s
        labels:
          severity: warnning
        annotations:
          description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>600"
          value: "{{ $value }}"
      - alert: kubernetes-controller-manager打开句柄数>1000
        expr: process_open_fds{job=~"kubernetes-controller-manager"}  > 1000
        for: 2s
        labels:
          severity: critical
        annotations:
          description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>1000"
          value: "{{ $value }}"
      - alert: kubernetes-apiserver打开句柄数>600
        expr: process_open_fds{job=~"kubernetes-apiserver"}  > 600
        for: 2s
        labels:
          severity: warnning
        annotations:
          description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>600"
          value: "{{ $value }}"
      - alert: kubernetes-apiserver打开句柄数>1000
        expr: process_open_fds{job=~"kubernetes-apiserver"}  > 1000
        for: 2s
        labels:
          severity: critical
        annotations:
          description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>1000"
          value: "{{ $value }}"
      - alert: kubernetes-etcd打开句柄数>600
        expr: process_open_fds{job=~"kubernetes-etcd"}  > 600
        for: 2s
        labels:
          severity: warnning
        annotations:
          description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>600"
          value: "{{ $value }}"
      - alert: kubernetes-etcd打开句柄数>1000
        expr: process_open_fds{job=~"kubernetes-etcd"}  > 1000
        for: 2s
        labels:
          severity: critical
        annotations:
          description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>1000"
          value: "{{ $value }}"
      - alert: coredns
        expr: process_open_fds{k8s_app=~"kube-dns"}  > 600
        for: 2s
        labels:
          severity: warnning
        annotations:
          description: "插件{{$labels.k8s_app}}({{$labels.instance}}): 打开句柄数超过600"
          value: "{{ $value }}"
      - alert: coredns
        expr: process_open_fds{k8s_app=~"kube-dns"}  > 1000
        for: 2s
        labels:
          severity: critical
        annotations:
          description: "插件{{$labels.k8s_app}}({{$labels.instance}}): 打开句柄数超过1000"
          value: "{{ $value }}"
      - alert: kube-proxy
        expr: process_virtual_memory_bytes{job=~"kubernetes-kube-proxy"}  > 2000000000
        for: 2s
        labels:
          severity: warnning
        annotations:
          description: "组件{{$labels.job}}({{$labels.instance}}): 使用虚拟内存超过2G"
          value: "{{ $value }}"
      - alert: scheduler
        expr: process_virtual_memory_bytes{job=~"kubernetes-schedule"}  > 2000000000
        for: 2s
        labels:
          severity: warnning
        annotations:
          description: "组件{{$labels.job}}({{$labels.instance}}): 使用虚拟内存超过2G"
          value: "{{ $value }}"
      - alert: kubernetes-controller-manager
        expr: process_virtual_memory_bytes{job=~"kubernetes-controller-manager"}  > 2000000000
        for: 2s
        labels:
          severity: warnning
        annotations:
          description: "组件{{$labels.job}}({{$labels.instance}}): 使用虚拟内存超过2G"
          value: "{{ $value }}"
      - alert: kubernetes-apiserver
        expr: process_virtual_memory_bytes{job=~"kubernetes-apiserver"}  > 2000000000
        for: 2s
        labels:
          severity: warnning
        annotations:
          description: "组件{{$labels.job}}({{$labels.instance}}): 使用虚拟内存超过2G"
          value: "{{ $value }}"
      - alert: kubernetes-etcd
        expr: process_virtual_memory_bytes{job=~"kubernetes-etcd"}  > 2000000000
        for: 2s
        labels:
          severity: warnning
        annotations:
          description: "组件{{$labels.job}}({{$labels.instance}}): 使用虚拟内存超过2G"
          value: "{{ $value }}"
      - alert: kube-dns
        expr: process_virtual_memory_bytes{k8s_app=~"kube-dns"}  > 2000000000
        for: 2s
        labels:
          severity: warnning
        annotations:
          description: "插件{{$labels.k8s_app}}({{$labels.instance}}): 使用虚拟内存超过2G"
          value: "{{ $value }}"
      - alert: HttpRequestsAvg
        expr: sum(rate(rest_client_requests_total{job=~"kubernetes-kube-proxy|kubernetes-kubelet|kubernetes-schedule|kubernetes-control-manager|kubernetes-apiservers"}[1m]))  > 1000
        for: 2s
        labels:
          team: admin
        annotations:
          description: "组件{{$labels.job}}({{$labels.instance}}): TPS超过1000"
          value: "{{ $value }}"
          threshold: "1000"
      - alert: Pod_restarts
        expr: kube_pod_container_status_restarts_total{namespace=~"kube-system|default|monitor-sa"} > 0
        for: 2s
        labels:
          severity: warnning
        annotations:
          description: "在{{$labels.namespace}}名称空间下发现{{$labels.pod}}这个pod下的容器{{$labels.container}}被重启,这个监控指标是由{{$labels.instance}}采集的"
          value: "{{ $value }}"
          threshold: "0"
      - alert: Pod_waiting
        expr: kube_pod_container_status_waiting_reason{namespace=~"kube-system|default"} == 1
        for: 2s
        labels:
          team: admin
        annotations:
          description: "空间{{$labels.namespace}}({{$labels.instance}}): 发现{{$labels.pod}}下的{{$labels.container}}启动异常等待中"
          value: "{{ $value }}"
          threshold: "1"
      - alert: Pod_terminated
        expr: kube_pod_container_status_terminated_reason{namespace=~"kube-system|default|monitor-sa"} == 1
        for: 2s
        labels:
          team: admin
        annotations:
          description: "空间{{$labels.namespace}}({{$labels.instance}}): 发现{{$labels.pod}}下的{{$labels.container}}被删除"
          value: "{{ $value }}"
          threshold: "1"
      - alert: Etcd_leader
        expr: etcd_server_has_leader{job="kubernetes-etcd"} == 0
        for: 2s
        labels:
          team: admin
        annotations:
          description: "组件{{$labels.job}}({{$labels.instance}}): 当前没有leader"
          value: "{{ $value }}"
          threshold: "0"
      - alert: Etcd_leader_changes
        expr: rate(etcd_server_leader_changes_seen_total{job="kubernetes-etcd"}[1m]) > 0
        for: 2s
        labels:
          team: admin
        annotations:
          description: "组件{{$labels.job}}({{$labels.instance}}): 当前leader已发生改变"
          value: "{{ $value }}"
          threshold: "0"
      - alert: Etcd_failed
        expr: rate(etcd_server_proposals_failed_total{job="kubernetes-etcd"}[1m]) > 0
        for: 2s
        labels:
          team: admin
        annotations:
          description: "组件{{$labels.job}}({{$labels.instance}}): 服务失败"
          value: "{{ $value }}"
          threshold: "0"
      - alert: Etcd_db_total_size
        expr: etcd_debugging_mvcc_db_total_size_in_bytes{job="kubernetes-etcd"} > 10000000000
        for: 2s
        labels:
          team: admin
        annotations:
          description: "组件{{$labels.job}}({{$labels.instance}}):db空间超过10G"
          value: "{{ $value }}"
          threshold: "10G"
      - alert: Endpoint_ready
        expr: kube_endpoint_address_not_ready{namespace=~"kube-system|default"} == 1
        for: 2s
        labels:
          team: admin
        annotations:
          description: "空间{{$labels.namespace}}({{$labels.instance}}): 发现{{$labels.endpoint}}不可用"
          value: "{{ $value }}"
          threshold: "1"
    - name: 物理节点状态-监控告警
      rules:
      - alert: 物理节点cpu使用率
        expr: 100-avg(irate(node_cpu_seconds_total{mode="idle"}[5m])) by(instance)*100 > 90
        for: 2s
        labels:
          severity: ccritical
        annotations:
          summary: "{{ $labels.instance }}cpu使用率过高"
          description: "{{ $labels.instance }}的cpu使用率超过90%,当前使用率[{{ $value }}],需要排查处理"
      - alert: 物理节点内存使用率
        expr: (node_memory_MemTotal_bytes - (node_memory_MemFree_bytes + node_memory_Buffers_bytes + node_memory_Cached_bytes)) / node_memory_MemTotal_bytes * 100 > 90
        for: 2s
        labels:
          severity: critical
        annotations:
          summary: "{{ $labels.instance }}内存使用率过高"
          description: "{{ $labels.instance }}的内存使用率超过90%,当前使用率[{{ $value }}],需要排查处理"
      - alert: InstanceDown
        expr: up == 0
        for: 2s
        labels:
          severity: critical
        annotations:
          summary: "{{ $labels.instance }}: 服务器宕机"
          description: "{{ $labels.instance }}: 服务器延时超过2分钟"
      - alert: 物理节点磁盘的IO性能
        expr: 100-(avg(irate(node_disk_io_time_seconds_total[1m])) by(instance)* 100) < 60
        for: 2s
        labels:
          severity: critical
        annotations:
          summary: "{{$labels.mountpoint}} 流入磁盘IO使用率过高!"
          description: "{{$labels.mountpoint }} 流入磁盘IO大于60%(目前使用:{{$value}})"
      - alert: 入网流量带宽
        expr: ((sum(rate (node_network_receive_bytes_total{device!~'tap.*|veth.*|br.*|docker.*|virbr*|lo*'}[5m])) by (instance)) / 100) > 102400
        for: 2s
        labels:
          severity: critical
        annotations:
          summary: "{{$labels.mountpoint}} 流入网络带宽过高!"
          description: "{{$labels.mountpoint }}流入网络带宽持续5分钟高于100M. RX带宽使用率{{$value}}"
      - alert: 出网流量带宽
        expr: ((sum(rate (node_network_transmit_bytes_total{device!~'tap.*|veth.*|br.*|docker.*|virbr*|lo*'}[5m])) by (instance)) / 100) > 102400
        for: 2s
        labels:
          severity: critical
        annotations:
          summary: "{{$labels.mountpoint}} 流出网络带宽过高!"
          description: "{{$labels.mountpoint }}流出网络带宽持续5分钟高于100M. RX带宽使用率{{$value}}"
      - alert: TCP会话
        expr: node_netstat_Tcp_CurrEstab > 1000
        for: 2s
        labels:
          severity: critical
        annotations:
          summary: "{{$labels.mountpoint}} TCP_ESTABLISHED过高!"
          description: "{{$labels.mountpoint }} TCP_ESTABLISHED大于1000%(目前使用:{{$value}}%)"
      - alert: 磁盘容量
        expr: 100-(node_filesystem_free_bytes{fstype=~"ext4|xfs"}/node_filesystem_size_bytes {fstype=~"ext4|xfs"}*100) > 80
        for: 2s
        labels:
          severity: critical
        annotations:
          summary: "{{$labels.mountpoint}} 磁盘分区使用率过高!"
          description: "{{$labels.mountpoint }} 磁盘分区使用大于80%(目前使用:{{$value}}%)"
同样需要手动添加$的变量。
在k8smaster节点重新生成一个prometheus-deploy.yaml文件
cat >prometheus-deploy.yaml <<EOF
---
apiVersion: apps/v1
kind: Deployment
metadata:
  name: prometheus-server
  namespace: monitor-sa
  labels:
    app: prometheus
spec:
  replicas: 1
  selector:
    matchLabels:
      app: prometheus
      component: server
    #matchExpressions:
    #- {key: app, operator: In, values: [prometheus]}
    #- {key: component, operator: In, values: [server]}
  template:
    metadata:
      labels:
        app: prometheus
        component: server
      annotations:
        prometheus.io/scrape: 'false'
    spec:
      nodeName: node1
      serviceAccountName: monitor
      containers:
      - name: prometheus
        image: prom/prometheus:v2.2.1
        imagePullPolicy: IfNotPresent
        command:
        - "/bin/prometheus"
        args:
        - "--config.file=/etc/prometheus/prometheus.yml"
        - "--storage.tsdb.path=/prometheus"
        - "--storage.tsdb.retention=24h"
        - "--web.enable-lifecycle"
        ports:
        - containerPort: 9090
          protocol: TCP
        volumeMounts:
        - mountPath: /etc/prometheus
          name: prometheus-config
        - mountPath: /prometheus/
          name: prometheus-storage-volume
        - name: k8s-certs
          mountPath: /var/run/secrets/kubernetes.io/k8s-certs/etcd/
      - name: alertmanager
        image: prom/alertmanager:v0.14.0
        imagePullPolicy: IfNotPresent
        args:
        - "--config.file=/etc/alertmanager/alertmanager.yml"
        - "--log.level=debug"
        ports:
        - containerPort: 9093
          protocol: TCP
          name: alertmanager
        volumeMounts:
        - name: alertmanager-config
          mountPath: /etc/alertmanager
        - name: alertmanager-storage
          mountPath: /alertmanager
        - name: localtime
          mountPath: /etc/localtime
      volumes:
        - name: prometheus-config
          configMap:
            name: prometheus-config
        - name: prometheus-storage-volume
          hostPath:
           path: /data
           type: Directory
        - name: k8s-certs
          secret:
           secretName: etcd-certs
        - name: alertmanager-config
          configMap:
            name: alertmanager
        - name: alertmanager-storage
          hostPath:
           path: /data/alertmanager
           type: DirectoryOrCreate
        - name: localtime
          hostPath:
           path: /usr/share/zoneinfo/Asia/Shanghai
EOF
生成一个etch-certs,这个在部署prometheus需要
kubectl -n monitor-sa create secret generic etcd-certs --from-file=/etc/kubernetes/pki/etcd/server.key  --from-file=/etc/kubernetes/pki/etcd/server.crt --from-file=/etc/kubernetes/pki/etcd/ca.crt
更新yaml文件,查看部署是否成功。
在k8smaster节点上重新生成一个alertmanager-svc.yaml文件
cat >alertmanager-svc.yaml <<EOF
---
apiVersion: v1
kind: Service
metadata:
  labels:
    name: prometheus
    kubernetes.io/cluster-service: 'true'
  name: alertmanager
  namespace: monitor-sa
spec:
  ports:
  - name: alertmanager
    nodePort: 30066
    port: 9093
    protocol: TCP
    targetPort: 9093
  selector:
    app: prometheus
  sessionAffinity: None
  type: NodePort
EOF
#查看service在物理机映射的端口
kubectl get svc -n monitor-sa
访问prometheus界面,点击alerts,把controller-manager的cpu使用率大于90%展开,可看到status为FIRING,表示prometheus已经将告警发给alertmanager,在Alertmanager 中可以看到有一个 alert。
登录alertmanager web界面查看
配置alertmanager报警-发送报警到钉钉
- 创建钉钉机器人 - 打开电脑版钉钉,创建一个群,创建自定义机器人,按如下步骤创建
 https://ding-doc.dingtalk.com/doc#/serverapi2/qf2nxq 我创建的机器人如下:
 群设置-->智能群助手-->添加机器人-->自定义-->添加 机器人名称:kube-event
 接收群组:钉钉报警测试 安全设置:
 自定义关键词:cluster1 上面配置好之后点击完成即可,这样就会创建一个kube-event的报警机器人,创建机器人成功之后怎么查看webhook,按如下: 点击智能群助手,可以看到刚才创建的kube-event这个机器人,点击kube-event,就会进入到kube-event机器人的设置界面
 出现如下内容:
 机器人名称:kube-event
 接受群组:钉钉报警测试
 消息推送:开启
 webhook:https://oapi.dingtalk.com/robot/send?access_token=9c03ff1f47b1d15a10d852398cafb84f8e81ceeb1ba557eddd8a79e5a5e5548e
 安全设置:
 自定义关键词:cluster1
 
- 安装钉钉的webhook插件,在master节点操作 - tar zxvf prometheus-webhook-dingtalk-0.3.0.linux-amd64.tar.gz
 #压缩包地址
 #链接:https://pan.baidu.com/s/1_HtVZsItq2KsYvOlkIP9DQ
 #提取码:d59o
 cd prometheus-webhook-dingtalk-0.3.0.linux-amd64 #启动钉钉报警插件
 nohup ./prometheus-webhook-dingtalk --web.listen-address="0.0.0.0:8060" --ding.profile="cluster1=https://oapi.dingtalk.com/robot/send?access_token=4372b6419ff1f198a9732dfb9f469f8c7eb7310dec00ede726a7ecd9d235c9b9" & #对原来的文件做备份
 cp alertmanager-cm.yaml alertmanager-cm.yaml.bak #重新生成一个新的alertmanager-cm.yaml文件
 cat >alertmanager-cm.yaml <<EOF
 kind: ConfigMap
 apiVersion: v1
 metadata:
 name: alertmanager
 namespace: monitor-sa
 data:
 alertmanager.yml: |-
 global:
 resolve_timeout: 1m
 smtp_smarthost: 'smtp.163.com:25'
 smtp_from: '15011572657@163.com'
 smtp_auth_username: '15011572657'
 smtp_auth_password: 'BDBPRMLNZGKWRFJP'
 smtp_require_tls: false
 route:
 group_by: [alertname]
 group_wait: 10s
 group_interval: 10s
 repeat_interval: 10m
 receiver: cluster1
 receivers:
 - name: cluster1
 webhook_configs:
 - url: 'http://192.168.124.16:8060/dingtalk/cluster1/send'
 send_resolved: true
 EOF #通过kubectl apply使配置生效
 kubectl delete -f alertmanager-cm.yaml
 kubectl apply -f alertmanager-cm.yaml
 kubectl delete -f prometheus-cfg.yaml
 kubectl apply -f prometheus-cfg.yaml
 kubectl delete -f prometheus-deploy.yaml
 kubectl apply -f prometheus-deploy.yaml
 #通过上面步骤,就可以实现钉钉报警了
 
Prometheus+Grafana+Alertmanager搭建全方位的监控告警系统的更多相关文章
- Prometheus+Grafana+Alertmanager实现告警推送教程 ----- 图文详解
		前言 本文主要介绍的是Prometheus采集数据,通过Grafana加上PromQL语句实现数据可视化以及通过Alertmanage实现告警推送功能.温馨提示,本篇文章特长,2w多的文字加上几十张图 ... 
- window平台基于influxdb + grafana + jmeter 搭建性能测试实时监控平台
		一.influxdb 安装与配置 1.1 influxdb下载并安装 官网无需翻墙,但是下载跳出的界面需要翻墙,我这里提供下载链接:https://dl.influxdata.com/influxdb ... 
- Prometheus+Grafana+Altermanager搭建监控系统
		基本概念 Prometheus 时间序列化数据库,我的理解就是将数据打上标签,以时间维度存储.后面有机会在深入研究. Prometheus架构如下: Grafana Prometheus中存储的数据, ... 
- 基于Prometheus+Grafana+AlertManager的监控系统
		一.Prometheus 1.1 简介 Prometheus是一套开源的监控&报警&时间序列数据库的组合,基于应用的metrics来进行监控的开源工具 . 1.2 下载&安装 ... 
- 使用 Prometheus + Grafana 对 Kubernetes 进行性能监控的实践
		1 什么是 Kubernetes? Kubernetes 是 Google 开源的容器集群管理系统,其管理操作包括部署,调度和节点集群间扩展等. 如下图所示为目前 Kubernetes 的架构图,由 ... 
- Prometheus+Grafana安装搭建
		介绍 Prometheus是由SoundCloud开发的开源监控报警系统和时序列数据库(TSDB).Prometheus使用Go语言开发,是Google BorgMon监控系统的开源版本. 2016年 ... 
- Kubernetes使用prometheus+grafana做一个简单的监控方案
		前言 本文介绍在k8s集群中使用node-exporter.prometheus.grafana对集群进行监控.其实现原理有点类似ELK.EFK组合.node-exporter组件负责收集节点上的me ... 
- 微服务监控之三:Prometheus + Grafana Spring Boot 应用可视化监控
		一.Springboot增加Prometheus 1.Spring Boot 应用暴露监控指标,添加如下依赖 <dependency> <groupId>org.springf ... 
- Prometheus Grafana快速搭建
		Prometheus Prometheus和Grafana组合基本上是监控系统的标配.Prometheus做存储后端,Grafana做分析及可视化界面. 普罗米修斯是开源的系统监控/报警工具库,功能非 ... 
随机推荐
- Flink-v1.12官方网站翻译-P013-Timely Stream Processing
			及时的流处理 介绍 及时流处理是有状态流处理的一种扩展,其中时间在计算中起着一定的作用.其中,当你做时间序列分析时,当做基于某些时间段(通常称为窗口)的聚合时,或者当你做事件处理时,事件发生的时间很重 ... 
- POJ2932 Coneology【圆扫描线】
			POJ2932 Coneology 题意: 给出一些不相交的圆,问有多少个圆不被其他圆包围 题解: 扫描线,把所有圆的左边界和右边界放到\(vector\)里排序,遍历到圆左边界的时候判断是否满足条件 ... 
- python的scrapy框架的使用 和xpath的使用  && scrapy中request和response的函数参数 && parse()函数运行机制
			这篇博客主要是讲一下scrapy框架的使用,对于糗事百科爬取数据并未去专门处理 最后爬取的数据保存为json格式 一.先说一下pyharm怎么去看一些函数在源码中的代码实现 按着ctrl然后点击函数就 ... 
- VJ train1 O-统计问题    题解
			原谅我缺少设备,只能手写图解 题目: 在一无限大的二维平面中,我们做如下假设: 1. 每次只能移动一格: 2. 不能向后走(假设 ... 
- 虚拟机linux操作系统上安装vmwareTools
			当你安装过操作系统后,你就可以在虚拟机上找到这个画面,在管理里面有一个安装VMwareTools这就是我们的目标,打开后就直接点击下载并安装就好了 当下载完成后在虚拟机下面就会出现这个东西,他的意思就 ... 
- QQ空间自动点赞js代码
			1.jQuery().each(): each() 方法为每个匹配元素规定要运行的函数. 提示:返回 false 可用于及早停止循环. 函数原型: function(index,element) 为每 ... 
- 流媒体传输协议之 RTP(下篇)
			本系列文章将整理各个流媒体传输协议,包括 RTP/RTCP,RTMP,希望通过深入梳理协议的设计细节,能够给流媒体领域的开发者带来一定的启发. 作者:逸殊 审核:泰一 接上篇:< 流媒体传输协议 ... 
- 使用cfssl生成自签证书
			安装ssl wget https://pkg.cfssl.org/R1.2/cfssl_linux-amd64 wget https://pkg.cfssl.org/R1.2/cfssljson_li ... 
- Linux系统CentOS进入单用户模式和救援模式详解
			一.概述 目前在运维日常工作中,经常会遇到服务器异常断电.忘记root密码.系统引导文件损坏无法进入系统等等操作系统层面的问题,给运维带来诸多不便,现将上述现象的解决方法和大家分享一下,本次主要以Ce ... 
- leetcode 12 整数转罗马数字 贪心
			额,连着两个贪心? 这是局部最优问题:能用大"罗马数表示"就不会用小的. 先构造出所有基础罗马数,然后从大到小比较 因为比较的只有1000,900,...有限并有些麻烦,构造tab ... 
