期望概率DP

1419: Red is good

Description

​ 桌面上有\(R\)张红牌和\(B\)张黑牌,随机打乱顺序后放在桌面上,开始一张一张地翻牌,翻到红牌得到1美元,黑牌则付出1美元。可以随时停止翻牌,在最优策略下平均能得到多少钱。

Input

​ 一行输入两个数\(R,B\),其值在0到5000之间

Output

​ 在最优策略下平均能得到多少钱。

Sample Input

​ 5 1

Sample Output

​ 4.166666

HINT

​ 输出答案时,小数点后第六位后的全部去掉,不要四舍五入。

solution

​ 这是我做的第一道期望概率DP题,刚刚看题时有点蒙。听完讲解之后感觉还是挺简单的。

​ 我们用\(f[i][j]\)表示翻了\(i\)张红牌 , 翻了\(j\)张黑牌的最优期望值。

​ 考虑怎么预处理。当全部是红牌时,最优策略肯定是\(i\),即\(f[i][0] = 1\);当全部是黑牌时,还不如不翻牌,最优策略就是0,即\(f[0][i] = 0\)。

​ 再考虑怎么转移。\(f[i][j] = max(0, \frac{i}{i+j}*(f[i - 1][j] + 1) + \frac{j}{i+j}*(f[i][j - 1] - 1)\);每翻一张红牌的概率是\(\frac{i}{i+j}\),它的权值是\(f[i - 1][j] + 1\)。黑牌同理。

​ 由于这道题的空间限制是\(64MB\),所以要用到滚动数组。我们更新当前状态时只与上一次有关,将第一位开2的大小就好了。

#include <iostream>
#include <cstdio> using namespace std; const int N = 5001;
int n, m;
double f[3][N]; double max(double a, double b) {
if(a >= b) return a;
return b;
} int main() { freopen("e.in","r",stdin);
freopen("e.out","w",stdout); cin >> n >> m;
for(int i = 1;i <= n; i++) {
f[i % 2][0] = i;
for(int j = 1;j <= m; j++) {
f[i % 2][j] = max(0, ((double)i/(i + j) * (f[(i - 1) % 2][j] + 1)) + ((double)j/(i + j) * (f[i % 2][j - 1] - 1)));
}
} printf("%.6f", f[n % 2][m] - 0.0000005); //小数点第六位后面的都去掉 fclose(stdin); fclose(stdout);
return 0;
}

期望概率DP的更多相关文章

  1. HDU 3853 期望概率DP

    期望概率DP简单题 从[1,1]点走到[r,c]点,每走一步的代价为2 给出每一个点走相邻位置的概率,共3中方向,不动: [x,y]->[x][y]=p[x][y][0] ,  右移:[x][y ...

  2. 【BZOJ 3652】大新闻 数位dp+期望概率dp

    并不难,只是和期望概率dp结合了一下.稍作推断就可以发现加密与不加密是两个互相独立的问题,这个时候我们分开算就好了.对于加密,我们按位统计和就好了;对于不加密,我们先假设所有数都找到了他能找到的最好的 ...

  3. 【BZOJ 3811】玛里苟斯 大力观察+期望概率dp+线性基

    大力观察:I.从输出精准位数的约束来观察,一定会有猫腻,然后仔细想一想,就会发现输出的时候小数点后面不是.5就是没有 II.从最后答案小于2^63可以看出当k大于等于3的时候就可以直接搜索了 期望概率 ...

  4. 【NOIP模拟赛】黑红树 期望概率dp

    这是一道比较水的期望概率dp但是考场想歪了.......我们可以发现奇数一定是不能掉下来的,因为若奇数掉下来那么上一次偶数一定不会好好待着,那么我们考虑,一个点掉下来一定是有h/2-1个红(黑),h/ ...

  5. BZOJ1415: [Noi2005]聪聪和可可 最短路 期望概率dp

    首先这道题让我回忆了一下最短路算法,所以我在此做一个总结: 带权: Floyed:O(n3) SPFA:O(n+m),这是平均复杂度实际上为O(玄学) Dijkstra:O(n+2m),堆优化以后 因 ...

  6. UVa 11427 Expect the Expected (数学期望 + 概率DP)

    题意:某个人每天晚上都玩游戏,如果第一次就䊨了就高兴的去睡觉了,否则就继续直到赢的局数的比例严格大于 p,并且他每局获胜的概率也是 p,但是你最玩 n 局,但是如果比例一直超不过 p 的话,你将不高兴 ...

  7. Hello 2019 D 素因子贡献法计算期望 + 概率dp + 滚动数组

    https://codeforces.com/contest/1097/problem/D 题意 给你一个n和k,问n经过k次操作之后留下的n的期望,每次操作n随机变成一个n的因数 题解 概率dp计算 ...

  8. 【BZOJ 3925】[Zjoi2015]地震后的幻想乡 期望概率dp+状态压缩+图论知识+组合数学

    神™题........ 这道题的提示......(用本苣蒻并不会的积分积出来的)并没有 没有什么卵用 ,所以你发现没有那个东西并不会 不影响你做题 ,然后你就可以推断出来你要求的是我们最晚挑到第几大的 ...

  9. BZOJ2337: [HNOI2011]XOR和路径 期望概率dp 高斯

    这个题让我认识到我以往对于图上期望概率的认识是不完整的,我之前只知道正着退还硬生生的AC做过的所有图,那么现在让我来说一下逆退,一般来说对于概率性的东西都只是正推,因为有了他爸爸才有了他,而对于期望性 ...

随机推荐

  1. 一个C++版本的Sqlite3封装--SmartDb

    Sqlite是一个非常轻量级的开源数据库,在嵌入式系统中使用的比较多,存储管理数据非常方便,Sqlite库提供的基于C语言的API,用起来也挺简单,但是有一点不太好的就是API使用起来有些繁琐,另外就 ...

  2. 求求你们不要再用 RSA 私钥加密公钥解密了,这非常不安全!

    最近经常在网上看到有人说巨硬的 CNG(Cryptography Next Generation 即下一代加密技术) 只提供 RSA 公钥加密私钥解密,没有提供 RSA 私钥加密公钥解密,他们要自己封 ...

  3. Docker 搭建 RabbitMQ

    Docker RabbitMQ RabbitMQ 安装非常繁琐,使用 Docker 快速搭建一个 RabbitMQ 开发环境 步骤 拉取镜像 docker pull rabbitmq 启动容器 端口会 ...

  4. idea如何打war包(不使用maven)

    用多了maven的小伙伴,应该快忘了怎么不用maven打war包了吧,我也快忘了,所以趁我还记得,赶紧记录下来,多年后,当我回忆起往事........ 而且网上的教程也太坑了吧,牛头不搭马嘴,这害死多 ...

  5. 37 Reasons why your Neural Network is not working

    37 Reasons why your Neural Network is not working Neural Network Check List 如何使用这个指南 数据问题 检查输入数据 试一下 ...

  6. 简直骚操作,ThreadLocal还能当缓存用

    背景说明 有朋友问我一个关于接口优化的问题,他的优化点很清晰,由于接口中调用了内部很多的 service 去组成了一个完成的业务功能.每个 service 中的逻辑都是独立的,这样就导致了很多查询是重 ...

  7. 链表(python)

    一.链表和数组 在编写代码中,我们储存的数据是存储于内存当中,内存就像一块块并列排序的小方盒,每个小方盒都有自己地址,我们储存的数据就在这样一个个小方盒当中. 这些数据存放的结构有两种基本方式,数组和 ...

  8. 关于在Visual Studio 2019预览版中的用户体验和界面的变化

    原文地址:https://blogs.msdn.microsoft.com/visualstudio/2018/11/12/a-preview-of-ux-and-ui-changes-in-visu ...

  9. c++排序二叉树的出现的私有函数讨论,以及二叉树的删除操作详解

    c++排序二叉树的出现的私有函数讨论, 以及二叉树的删除操作详解 标签(空格分隔): c++ 前言 我在c++学习的过程中, 最近打了一个排序二叉树的题目,题目中出现了私有函数成员,当时没有理解清楚这 ...

  10. 个人电脑搭建ftp----------------2

    个人电脑搭建ftp 从上一次搭建好的局域网继续完成我的后续. 打开windows10 控制面板 点击启用或关闭windows功能 找到Internet Information Services,开启所 ...