Educational Codeforces Round 88 (Rated for Div. 2) E、Modular Stability 逆元+思维
题目链接:E、Modular Stability
题意:
给你一个n数,一个k,在1,2,3...n里挑选k个数,使得对于任意非负整数x,对于这k个数的任何排列顺序,然后用x对这个排列一次取模,如果最后取模结果不变,那么称它为稳定的,求稳定数组的个数。
题解:
我们知道y%x%y!=y%y%x,那么如果要想满足题意那么这个最后的结果应该是0,也就是说这n个数里面那一个最小的x,这个x可以把剩下k-1个数整除,这样的话结果就肯定是0
比如如果k=3,n=10,那么(2,4,6,8,10),我们只需要从中拿出来3个就可以,也就是排列组合C35 ,这里我们只举例x==2
因为要用到排列组合,所以这里用到了逆元的费马小定理推导,具体见:https://www.cnblogs.com/kongbursi-2292702937/p/10582258.html
代码:
#include<stdio.h>
#include<algorithm>
#include<iostream>
#include<string>
#include<queue>
#include<deque>
#include<string.h>
#include<map>
#include <iostream>
#include <math.h>
#define Mem(a,b) memset(a,b,sizeof(a))
const double II = acos(-1);
const double PP = (II*1.0)/(180.00);
using namespace std;
typedef long long ll;
const int INF=0x3f3f3f3f;
const int maxn=5e5+10;
const double eps=1e-6;
const double PI=acos(-1);
const int mod=998244353;
ll v[maxn],n,k;
void find_divide()
{
for(ll i=1;i*k<=n;++i)
{
v[i]=n/i-1;
}
}
ll ppow(ll a,ll b)
{
ll ans=1;
while(b)
{
if(b&1) ans=(ans*a)%mod;
a=(a*a)%mod;
b>>=1;
}
return ans;
}
ll solve(ll now,int num)
{
ll ans=1;
for(ll i=v[now];i>v[now]-num;--i)
ans=(ans*i)%mod;
for(ll i=1;i<=num;++i)
{
ans=(ans*ppow(i,mod-2))%mod;
}
return ans;
}
int main()
{
ll sum=0;
scanf("%I64d%I64d",&n,&k);
find_divide();
for(ll i=1;i*k<=n;++i)
{ sum=(sum+solve(i,k-1))%mod;
//printf("%d**\n",sum);
}
printf("%I64d\n",sum);
return 0;
}
Educational Codeforces Round 88 (Rated for Div. 2) E、Modular Stability 逆元+思维的更多相关文章
- Educational Codeforces Round 88 (Rated for Div. 2) E. Modular Stability(数论)
题目链接:https://codeforces.com/contest/1359/problem/E 题意 有一大小为 $k$ 的数组,每个元素的值在 $[1,n]$ 间,若元素间两两不等,问有多少数 ...
- Educational Codeforces Round 88 (Rated for Div. 2) B. New Theatre Square(贪心)
题目链接:https://codeforces.com/contest/1359/problem/B 题意 有一块 $n \times m$ 的地板和两种瓷砖: $1 \times 1$,每块花费为 ...
- Educational Codeforces Round 88 (Rated for Div. 2) D. Yet Another Yet Another Task(枚举/最大连续子序列)
题目链接:https://codeforces.com/contest/1359/problem/D 题意 有一个大小为 $n$ 的数组,可以选取一段连续区间去掉其中的最大值求和,问求和的最大值为多少 ...
- Educational Codeforces Round 88 (Rated for Div. 2) A. Berland Poker(数学)
题目链接:https://codeforces.com/contest/1359/problem/A 题意 $n$ 张牌可以刚好被平分给 $k$ 个人,其中有 $m$ 张 joker,当一个人手中的 ...
- Educational Codeforces Round 88 (Rated for Div. 2) C. Mixing Water(数学/二分)
题目链接:https://codeforces.com/contest/1359/problem/C 题意 热水温度为 $h$,冷水温度为 $c\ (c < h)$,依次轮流取等杯的热冷水,问二 ...
- Educational Codeforces Round 88 (Rated for Div. 2) D、Yet Another Yet Another Task
题意: 给你一个含n个数a1,a2...an的数组,你要找到一个区间[l,r],使得al+a(l+1)+...+a(r-1)+ar减去max(al,a(l+1),...,a(r-1),ar)的值尽可能 ...
- Educational Codeforces Round 88 (Rated for Div. 2) B、New Theatre Square C、Mixing Water
题目链接:B.New Theatre Square 题意: 你要把所有"." 都变成"*",你可以有两个选择,第一种就是一次铺一个方块(1*1),第二种就是同一 ...
- Educational Codeforces Round 65 (Rated for Div. 2) E. Range Deleting(思维+coding)
传送门 参考资料: [1]:https://blog.csdn.net/weixin_43262291/article/details/90271693 题意: 给你一个包含 n 个数的序列 a,并且 ...
- Educational Codeforces Round 73 (Rated for Div. 2)D(DP,思维)
#define HAVE_STRUCT_TIMESPEC#include<bits/stdc++.h>using namespace std;long long a[300007],b[3 ...
随机推荐
- 牛客剑指Offer-数字在升序数组中出现的次数
题目 统计一个数字在升序数组中出现的次数. 示例1 输入 [1,2,3,3,3,3,4,5],3 返回值 4 题解 第一种最简单的方法是O(n)复杂度.遍历数组统计结果. public int Get ...
- ctfhub技能树—文件上传—文件头检查
打开靶机 尝试上传一个php文件 抓包修改 放包 制作图片马 上传图片马,并修改文件类型为png 测试连接 查找flag 成功拿到flag
- windows下的:开始→运行→命令
开始→运行→命令 集锦 winver---------检查Windows版本wmimgmt.msc----打开windows管理体系结构(WMI)wu ...
- WCNSS_qcom_cfg.ini WIFI配置文件参数详细解析
STA相关的一般配置 参数 含义 最小值 最大值 默认值 gNeighborLookupThreshold 1 触发roam scan发生的条件在WCNSS_qcom_cfg.ini文件中gNeigh ...
- MYSQL基础知识的复习1
数据库(是存放数据的仓库) 1.根据存储量以及安全性上来划分: 大型数据库:DB2 Oracle(毕业) Hbase 银行 公安局(不加班 没网) 移动 中型数据库:mysql sqlserver(. ...
- FTP使用Socket SSL流程认证(一)
关于Ftp使用SSL流程认证 本文章使用的是C#,ftp服务器为FileZilla 注:如果不是使用的Socket可以使用FtpWebRequst类,说实话,该类比较简单,但现在说的是SOCKET,网 ...
- Flink可靠性的基石-checkpoint机制详细解析
Checkpoint介绍 checkpoint机制是Flink可靠性的基石,可以保证Flink集群在某个算子因为某些原因(如 异常退出)出现故障时,能够将整个应用流图的状态恢复到故障之前的某一状态,保 ...
- Linux安装redis报错:jemalloc/jemalloc.h: No such file or directory踩坑
报错内容: 针对这个错误,我们可以在README.md 文件中看到解释: --------- Selecting a non-default memory allocator when buildin ...
- Code Review 的几个技巧
No magic: Explicit not implicit: 覆盖度比深度重要,覆盖度追求100%: 频率比仪式感重要,坐公交蹲厕所打开手机都可以 Review 别人代码,不需要专门组织会议: 粒 ...
- Centos7 Nginx 安装
下载地址:http://nginx.org/download/nginx-1.18.0.tar.gz 1.准备工作 #安装gcc yum install gcc-c++ #安装pcre pcre-de ...