传送门:POJ - 3693  

题意:给你一个字符串,求重复次数最多的连续重复子串,如果有一样的,取字典序小的字符串。

题解:

比较容易理解的部分就是枚举长度为L,然后看长度为L的字符串最多连续出现几次。既然长度为L的串重复出现,那么str[0],str[l],str[2*l]……中肯定有两个连续的出现在字符串中。

那么就枚举连续的两个,然后从这两个字符前后匹配,看最多能匹配多远。即以str[i*l],str[i*l+l]前后匹配,这里是通过查询suffix(i*l),suffix(i*l+l)的最长公共前缀。通过rank值能找到i*l,与i*l+l的排名,我们要查询的是这段区间的height的最小值,通过RMQ预处理达到查询为0(1)的复杂度

设LCP长度为M, 则答案显然为M / L + 1, 但这不一定是最好的, 因为答案的首尾不一定再我们枚举的位置上. 我的解决方法是, 我们考虑M % L的值的意义, 我们可以认为是后面多了M % L个字符, 但是我们更可以想成前面少了(L - M % L)个字符! 所以我们求后缀j * L - (L - M % L)与后缀(j+ 1) * L - (L - M % L)的最长公共前缀。即把之前的区间前缀L-M%L即可。

然后把可能取到最大值的长度L保存,由于 题目要求字典序最小,通过sa数组进行枚举,取到的第一组,肯定是字典序最小的。

题解的出处:https://blog.csdn.net/acm_cxlove/article/details/7941205

  1 #include<cstdio>
2 #include<algorithm>
3 #include<queue>
4 #include<iostream>
5 #include<cmath>
6 #include<cstring>
7 using namespace std;
8
9 const int maxn = 1e5+10;
10 int wa[maxn],wb[maxn],wsf[maxn],wv[maxn],sa[maxn];
11 int rnk[maxn],height[maxn];
12 char s[maxn];
13 int r[maxn];
14
15 //sa:字典序中排第i位的起始位置在str中第sa[i] sa[1~n]为有效值
16
17 //rnk:就是str第i个位置的后缀是在字典序排第几 rnk[0~n-1]为有效值
18
19 //height:字典序排i和i-1的后缀的最长公共前缀 height[2~n]为有效值,第二个到最后一个
20
21 int cmp(int *r,int a,int b,int k)
22 {
23 return r[a]==r[b]&&r[a+k]==r[b+k];
24 }
25
26 void getsa(int *r,int *sa,int n,int m)//n为添加0后的总长
27 {
28 int i,j,p,*x=wa,*y=wb,*t;
29 for(i=0; i<m; i++) wsf[i]=0;
30 for(i=0; i<=n; i++) wsf[x[i]=r[i]]++;
31 for(i=1; i<m; i++) wsf[i]+=wsf[i-1];
32 for(i=n; i>=0; i--) sa[--wsf[x[i]]]=i;
33 p=1;
34 j=1;
35 for(; p<=n; j*=2,m=p){
36 for(p=0,i=n+1-j; i<=n; i++) y[p++]=i;
37 for(i=0; i<=n; i++) if(sa[i]>=j) y[p++]=sa[i]-j;
38 for(i=0; i<=n; i++) wv[i]=x[y[i]];
39 for(i=0; i<m; i++) wsf[i]=0;
40 for(i=0; i<=n; i++) wsf[wv[i]]++;
41 for(i=1; i<m; i++) wsf[i]+=wsf[i-1];
42 for(i=n; i>=0; i--) sa[--wsf[wv[i]]]=y[i];
43 swap(x,y);
44 x[sa[0]]=0;
45 for(p=1,i=1; i<=n; i++)
46 x[sa[i]]=cmp(y,sa[i-1],sa[i],j)? p-1:p++;
47 }
48 }
49
50 void getheight(int *r,int n)//n为添加0后的总长
51 {
52 int i,j,k=0;
53 for(i=1; i<=n; i++) rnk[sa[i]]=i;
54 for(i=0; i<n; i++){
55 if(k)
56 k--;
57 else
58 k=0;
59 j=sa[rnk[i]-1];
60 while(r[i+k]==r[j+k])
61 k++;
62 height[rnk[i]]=k;
63 }
64 }
65
66 int dp[maxn][40];
67
68 void rmq_init(int n){
69
70 int m=floor(log(n+0.0)/log(2.0));
71 for(int i=1;i<=n;i++)dp[i][0]=height[i];
72 for(int j=1;j<=m;j++){
73 for(int i=n;i;i--){
74 dp[i][j]=dp[i][j-1];
75 if(i+(1<<(j-1))<=n){
76 dp[i][j]=min(dp[i][j],dp[i+(1<<(j-1))][j-1]);
77 }
78 }
79 }
80 }
81
82 int rmq(int l,int r){
83
84 int a=rnk[l],b=rnk[r];
85 if(a>b)swap(a,b);
86 a++;
87 int k=floor(log(b-a+1.0)/log(2.0));
88 return min(dp[a][k],dp[b-(1<<k)+1][k]);
89 }
90
91 int main()
92 {
93 ios::sync_with_stdio(false);
94 cin.tie(0);
95 cout.tie(0);
96 int t=1;
97 while(cin>>s){
98 if(s[0]=='#') break;
99 int len=strlen(s);
100 for(int i=0;i<len;i++) r[i]=s[i]-'a'+1;
101 r[len]=0;
102 getsa(r,sa,len,150);
103 getheight(r,len);
104 rmq_init(len);
105 int ans=0;
106 int pos=0,p=0;
107 for(int k=1;k<len;k++){ //枚举长度
108 for(int i=0;i+k<len;i+=k){ //第i段
109 int n=rmq(i,i+k); //每一段的公共前缀最小值
110 n--;
111 for(int j=0;j<=k-1;j++){ //枚举每一段的起点
112 int now=i-j;
113 if((now<0||s[now]!=s[now+k])&&j) break;
114 n++;
115 int sum=n/k+1;
116 if(sum>ans||(sum==ans&&rnk[now]<rnk[pos])){
117 ans=sum;
118 pos=now;
119 p=k;
120 }
121 }
122 }
123 }
124 cout<<"Case "<<t++<<": ";
125 if(ans<=1){
126 char tmp='z';
127 for(int i=0;i<len;i++) tmp=min(tmp,s[i]);
128 cout<<tmp<<endl;
129 }
130 else{
131 for(int i=0;i<ans*p;i++){
132 cout<<s[i+pos];
133 }
134 cout<<endl;
135 }
136 }
137 return 0;
138 }

POJ - 3693 Maximum repetition substring(重复次数最多的连续重复子串)的更多相关文章

  1. 【POJ 3693】Maximum repetition substring 重复次数最多的连续重复子串

    后缀数组的论文里的例题,论文里的题解并没有看懂,,, 求一个重复次数最多的连续重复子串,又因为要找最靠前的,所以扫的时候记录最大的重复次数为$ans$,扫完后再后从头暴力扫到尾找重复次数为$ans$的 ...

  2. POJ3693 Maximum repetition substring —— 后缀数组 重复次数最多的连续重复子串

    题目链接:https://vjudge.net/problem/POJ-3693 Maximum repetition substring Time Limit: 1000MS   Memory Li ...

  3. POJ 3693 Maximum repetition substring(连续重复子串)

    http://poj.org/problem?id=3693 题意:给定一个字符串,求重复次数最多的连续重复子串. 思路: 这道题确实是搞了很久,首先枚举连续子串的长度L,那么子串肯定包含了r[k], ...

  4. poj 3693 后缀数组 重复次数最多的连续重复子串

    Maximum repetition substring Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 8669   Acc ...

  5. POJ 3693 Maximum repetition substring(后缀数组)

    Description The repetition number of a string is defined as the maximum number R such that the strin ...

  6. POJ-3693-Maximum repetition substring(后缀数组-重复次数最多的连续重复子串)

    题意: 给出一个串,求重复次数最多的连续重复子串 分析: 比较容易理解的部分就是枚举长度为L,然后看长度为L的字符串最多连续出现几次. 既然长度为L的串重复出现,那么str[0],str[l],str ...

  7. 后缀数组 POJ 3693 Maximum repetition substring

    题目链接 题意:给定一个字符串,求重复次数最多的连续重复子串. 分析:(论文上的分析)先穷举长度 L,然后求长度为 L 的子串最多能连续出现几次.首先连续出现 1 次是肯定可以的,所以这里只考虑至少 ...

  8. spoj687 后缀数组重复次数最多的连续重复子串

    REPEATS - Repeats no tags  A string s is called an (k,l)-repeat if s is obtained by concatenating k& ...

  9. SPOJ - REPEATS —— 后缀数组 重复次数最多的连续重复子串

    题目链接:https://vjudge.net/problem/SPOJ-REPEATS REPEATS - Repeats no tags  A string s is called an (k,l ...

随机推荐

  1. 解放双手,markdown文章神器,Typora+PicGo+七牛云图床实现自动上传图片

    本文主要分享使用Typora作为Markdown编辑器,PicGo为上传图片工具,使用七牛云做存储来解放双手实现图片的自动化上传与管理.提高写作效率,提升逼格.用过 Markdown 的朋友一定会深深 ...

  2. Github 简单使用

    第一步:打开官网:https://github.com 注册一个帐户. 第二步:创建仓库 填写仓库的名字和描述. 创建好了之后,点击"Branch master",创建分支--在文 ...

  3. 【剑指 Offer】10-I.斐波那契数列

    题目描述 写一个函数,输入 n ,求斐波那契(Fibonacci)数列的第 n 项.斐波那契数列的定义如下: F(0) = 0,   F(1) = 1 F(N) = F(N - 1) + F(N - ...

  4. hive窗口函数/分析函数详细剖析

    hive窗口函数/分析函数 在sql中有一类函数叫做聚合函数,例如sum().avg().max()等等,这类函数可以将多行数据按照规则聚集为一行,一般来讲聚集后的行数是要少于聚集前的行数的.但是有时 ...

  5. Spring Security,没有看起来那么复杂(附源码)

    权限管理是每个项目必备的功能,只是各自要求的复杂程度不同,简单的项目可能一个 Filter 或 Interceptor 就解决了,复杂一点的就可能会引入安全框架,如 Shiro, Spring Sec ...

  6. 《UML与设计原则》--第四小组

    关于设计模式与原则 一.设计模式简介 设计模式描述了软件设计过程中某一类常见问题的一般性的解决方案.而面向对象设计模式描述了面向对象设计过程中特定场景下.类与相互通信的对象之间常见的组织关系. 二.G ...

  7. 路由协议-RIP协议

    一.路由协议的发展历程和分类 距离矢量路由协议--听信"谣言",使用跳数作为度量值,最大16(0-15)跳:RIP 链路状态路由协议--"地图"路由协议:OSP ...

  8. 详解Go中内存分配

    转载请声明出处哦~,本篇文章发布于luozhiyun的博客:https://www.luozhiyun.com 本文使用的go的源码15.7 介绍 Go 语言的内存分配器就借鉴了 TCMalloc 的 ...

  9. 洛谷P3850 书架

    题目描述 Knuth先生家里有个精致的书架,书架上有N本书,如今他想学到更多的知识,于是又买来了M本不同的新书.现在他要把新买的书依次插入到书架中,他已经把每本书要插入的位置标记好了,并且相应的将它们 ...

  10. SpringMVC听课笔记(SpringMVC 表单标签 & 处理静态资源)

    1.springmvc表单标签,可以快速开发,表单回显,但是感触不深 2.静态资源的获取,主要是要配置这个