UVA - 11300 Spreading the Wealth(数学题)
UVA - 11300 Spreading the Wealth
【题目描述】
圆桌旁边坐着n个人,每个人有一定数量的金币,金币的总数能被n整除。每个人可以给他左右相邻的人一些金币,最终使得每个人的金币数量相等。您的任务是求出被转手的金币的数量的最小值。
【输入格式】
输入包含多组数据。每组数据第一行为一个整数n(n<=1000000)0),以下n行每行为一个整数,按逆时针顺序给出每个人拥有的金币数。输入结束标志为文件结束符(EOF)
【输出格式】
对于每组数据,输出被转手的金币的数量的最小值。输入保证这个值在 64位无符号整数的范围之内。
【Sample】
Input
3
100
100
100
4
1
2
5
4
Output
0
4
【Solution】
这是一道数学题
根据题意
每个人都可以给两边人传递硬币
为了简化问题
我们定向每个人i只能给下一个人x[i]枚硬币
那么我们的答案就是求\(|x_1| + |x_2| + ... + |x_n|\)的最小值
假设最终每个人分到num枚硬币
那么当前第i个人的情况是
a[i] - x[i] + x[i + 1] = num;
接下来就是推导式子
\(x_{i+1} = num - a_i + x_i\)
\(x_2 = num - a_1 + x_1\)
\(x_3 = num - a_2 + x_2\)
联立上述两个式子得到
\(x_2 = x_1 - (a_1 - num)\);
\(x_3 = x_2 - (a_1 + a_2 - 2 * num)\)
同理我们可以写出\(1\) ~ \(n\)所有的项数
所有的式子相加可以得到
$x_i = x_1 - $ \(\sum_{i = 1}^{n - 1} a_j - (n - 1) * m\)
由此可见,我们要求得答案只与\(x_1\)有关
拿一个\(tmp_i\)表示后面的一大坨\(\sum_{i = 1}^{n - 1} a_j - (n - 1) * m\)
我们的答案的表达式为
\(|x_1| + |x_2| + ... + |x_n| = |x_1| + |x_1 - tmp_2| + |x_1- tmp_3| + ... + |x_1- tmp_n|\)
根据这是一道数学题
不难想到
上述等式右边表示\(x _ 1\)到\(tmp_1\)~\(tmp_n\)的距离之和
显然,当\(x_1\)为集合$ {tmp_n} $的中位数时
该式子取得最小值
代码
#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
#define int long long
using namespace std;
inline int read(){
int x = 0, w = 1;
char ch = getchar();
for(; ch > '9' || ch < '0'; ch = getchar()) if(ch == '-') w = -1;
for(; ch >= '0' && ch <= '9'; ch = getchar()) x = x * 10 + ch - '0';
return x * w;
}
const int maxn = 1000010;
int a[maxn], tmp[maxn];
int num, n;
signed main(){
while(scanf("%lld", &n) != EOF){
memset(a, 0, sizeof a);
memset(tmp, 0, sizeof tmp);
int ans = 0;
int sum = 0;
for(int i = 1; i <= n ;i++){
a[i] = read();
sum += a[i];
}
num = sum / n;
tmp[1] = 0;
for(int i = 1; i < n; i++){
tmp[i + 1] = num - a[i] + tmp[i];
}
sort(tmp + 1, tmp + 1 + n);
int x = tmp[n / 2];
for(int i = 1; i <= n; i++){
ans += abs(x - tmp[i]);
}
cout << ans << endl;
}
return 0;
}
UVA - 11300 Spreading the Wealth(数学题)的更多相关文章
- UVa 11300 Spreading the Wealth(有钱同使)
p.MsoNormal { margin: 0pt; margin-bottom: .0001pt; text-align: justify; font-family: "Times New ...
- uva 11300 - Spreading the Wealth(数论)
题目链接:uva 11300 - Spreading the Wealth 题目大意:有n个人坐在圆桌旁,每个人有一定的金币,金币的总数可以被n整除,现在每个人可以给左右的人一些金币,使得每个人手上的 ...
- UVA.11300 Spreading the Wealth (思维题 中位数模型)
UVA.11300 Spreading the Wealth (思维题) 题意分析 现给出n个人,每个人手中有a[i]个数的金币,每个人能给其左右相邻的人金币,现在要求你安排传递金币的方案,使得每个人 ...
- 数学/思维 UVA 11300 Spreading the Wealth
题目传送门 /* 假设x1为1号给n号的金币数(逆时针),下面类似 a[1] - x1 + x2 = m(平均数) 得x2 = x1 + m - a[1] = x1 - c1; //规定c1 = a[ ...
- Uva 11300 Spreading the Wealth(递推,中位数)
Spreading the Wealth Problem A Communist regime is trying to redistribute wealth in a village. They ...
- Math - Uva 11300 Spreading the Wealth
Spreading the Wealth Problem's Link ---------------------------------------------------------------- ...
- UVA 11300 Spreading the Wealth (数学推导 中位数)
Spreading the Wealth Problem A Communist regime is trying to redistribute wealth in a village. They ...
- [ACM_几何] UVA 11300 Spreading the Wealth [分金币 左右给 最终相等 方程组 中位数]
Problem A Communist regime is trying to redistribute wealth in a village. They have have decided to ...
- UVa 11300 Spreading the Wealth 分金币
圆桌旁坐着 n 个人,每个人都有一定数量的金币,金币总数能够被 n 整除.每个人可以给他左右相邻的人一些金币,最终使得每个人的金币数目相等.你的任务是求出被转手的金币数量的最小值,比如 n = 4, ...
随机推荐
- K8S-PV和PVC的实践
一.什么是PV和PVC? PV的全称是Persistent Volume,翻译过来为持久化存储卷,是对底层的共享存储的一种抽象,PV由管理员进行创建和配置,主要含存储能力.访问模式.存储类型.回收策略 ...
- CORS跨域漏洞学习
简介 网站如果存CORS跨域漏洞就会有用户敏感数据被窃取的风险. 跨域资源共享(CORS)是一种浏览器机制,可实现对位于给定域外部的资源的受控访问.它扩展了同源策略(SOP)并增加了灵活性.但是,如果 ...
- Cypress系列(16)- 查找页面元素的基本方法
如果想从头学起Cypress,可以看下面的系列文章哦 https://www.cnblogs.com/poloyy/category/1768839.html 前端页面代码 后面写的 Cypress ...
- 20184302 2019-2020-2 《Python程序设计》实验四报告
20184302 2019-2020-2 <Python程序设计>实验四报告 课程:<Python程序设计> 班级: 1843 姓名: 李新锐 学号:184302 实验教师:王 ...
- netty集群(一)-服务注册发现
上篇文章介绍了如何搭建一个单机版本的netty聊天室:https://www.jianshu.com/p/f786c70eeccc. 一.需要解决什么问题: 当连接数超过单机的极限时,需要将netty ...
- @codeforces - 549E@ Sasha Circle
目录 @description@ @solution@ @accepted code@ @details@ @description@ 给定两个点集 M 与 S,求是否存在一个圆能够分割两个点集. 原 ...
- Communication【floyd判环+并查集】
Communication 题目链接(点击) 题目描述 The Ministry of Communication has an extremely wonderful message system, ...
- 并发系列(一)——线程池源码(ThreadPoolExecutor类)简析
前言 本文主要是结合源码去线程池执行任务的过程,基于JDK 11,整个过程基本与JDK 8相同. 个人水平有限,文中若有表达有误的,欢迎大伙留言指出,谢谢了! 一.线程池简介 1.1 使用线程池的优点 ...
- 获取ul下面最后一个li或ul中有多少个li
获取ul下面最后一个li或ul中有多少个li 先获取ul的对象,再通过这个对象获取li的list用for循环取值text之类的 def set_city(self, base_info): quali ...
- filter()函数过滤序列
''' Python内建的filter()函数用于过滤序列. 和map()类似,filter()也接收一个函数和一个序列.和map()不同的是,filter()把传入的函数依次作用于每个元素,然后根据 ...