clc;
clear all;
close all;

Start_Pi = [-1,-1];
State_k = ['H','L'];
% 转移矩阵
Transition_matrix = [-1,-1.322;-1.322,-0.737];
% 0 H L
% H -1 -1
% L -1.322,-0.373
% 序列中包含字母ACTG
sequence = ['A','C','G','T'];
Emission_matrix = [-2.322,-1.737,-1.737,-2.322;
-1.737,-2.322,-2.322,-1.737];
Observation_sequence = ['G','G','C','A','C','T','G','A','A'];
k = length(State_k);
l = length(Observation_sequence);
Result_matrix = zeros(k + 1,l + 1);
Result_matrix(1,2:l+1) = Observation_sequence;
Result_matrix(2:k+1,1) = State_k ;
%% Viterbi algorithm(这里是用权值代替概率计算的)
Result_matrix(2,2) = Start_Pi(1) + Emission_matrix(1,find(sequence ...
== Observation_sequence(1),1));
Result_matrix(3,2) = Start_Pi(2) + Emission_matrix(2,find(sequence ...
== Observation_sequence(1),1));
for i = 3 : l + 1
for j = 2: k+1
if j ~= k + 1
Result_matrix(j,i) = Emission_matrix(j - 1,find(sequence == Observation_sequence(i - 1),1)) +...
max(Result_matrix(j,i - 1) + Transition_matrix(j - 1,1),Result_matrix(j + 1,i - 1) + Transition_matrix(j,1) );
else
Result_matrix(j,i) = Emission_matrix(j - 1,find(sequence == Observation_sequence(i - 1),1)) +...
max(Result_matrix(j -1,i - 1) + Transition_matrix(j - 2,2),Result_matrix(j ,i - 1) + Transition_matrix(j - 1,2) );
end
end
end
%% back tracing
Result = max(Result_matrix(2:k+1,l+1));
[row,~ ]= find(Result_matrix == Result);
State_sequence = [];
State_sequence= strcat(State_k(row-1));
for i = l : -1: 3
if row == k+ 1
if Result == Result_matrix(row,i ) + Transition_matrix(row - 1,2) +...
Emission_matrix(row - 1,find(sequence == Observation_sequence(i),1))
State_sequence = strcat(State_k(2),State_sequence);
Result = Result_matrix(row,i );
else
State_sequence =strcat(State_k(1),State_sequence);
row = row -1;
Result = Result_matrix(row,i );
end
elseif row == 2
if Result == Result_matrix(row,i ) + Transition_matrix(row - 1,1) + ...
Emission_matrix(row - 1,find(sequence == Observation_sequence(i),1));
State_sequence=strcat(State_k(1),State_sequence);
Result = Result_matrix(row,i );
else
State_sequence=strcat(State_k(2),State_sequence);
row = row + 1;
Result = Result_matrix(row,i );
end
else
break;% 因为例子只有两个状态,其他就没有写
end
end
%% 输出序列头部处理
tem = max(Result_matrix(2:3,2));
[r,~] = find(Result_matrix == tem);
State_sequence= strcat(State_k(r-1),State_sequence);
disp(State_sequence)

Viterbi算法的更多相关文章

  1. HMM Viterbi算法 详解

    HMM:隐式马尔可夫链   HMM的典型介绍就是这个模型是一个五元组: 观测序列(observations):实际观测到的现象序列 隐含状态(states):所有的可能的隐含状态 初始概率(start ...

  2. 隐马尔可夫模型(HMM)及Viterbi算法

    HMM简介   对于算法爱好者来说,隐马尔可夫模型的大名那是如雷贯耳.那么,这个模型到底长什么样?具体的原理又是什么呢?有什么具体的应用场景呢?本文将会解答这些疑惑.   本文将通过具体形象的例子来引 ...

  3. 隐马尔可夫(HMM)、前/后向算法、Viterbi算法

    HMM的模型  图1 如上图所示,白色那一行描述由一个隐藏的马尔科夫链生成不可观测的状态随机序列,蓝紫色那一行是各个状态生成可观测的随机序列 话说,上面也是个贝叶斯网络,而贝叶斯网络中有这么一种,如下 ...

  4. ZH奶酪:隐马尔可夫模型学习小记——forward算法+viterbi算法+forward-backward算法(Baum-welch算法)

    网上关于HMM的学习资料.博客有很多,基本都是左边摘抄一点,右边摘抄一点,这里一个图,那里一个图,公式中有的变量说不清道不明,学起来很费劲. 经过浏览几篇博文(其实有的地方写的也比较乱),在7张4开的 ...

  5. Viterbi算法和隐马尔可夫模型(HMM)算法

    隐马尔可夫模型(HMM)及Viterbi算法 https://www.cnblogs.com/jclian91/p/9954878.html HMM简介   对于算法爱好者来说,隐马尔可夫模型的大名那 ...

  6. 隐马尔可夫模型(HMM)及Viterbi算法

    HMM简介 对于算法爱好者来说,隐马尔可夫模型的大名那是如雷贯耳.那么,这个模型到底长什么样?具体的原理又是什么呢?有什么具体的应用场景呢?本文将会解答这些疑惑. 本文将通过具体形象的例子来引入该模型 ...

  7. 隐马尔可夫模型及Viterbi算法

    隐马尔可夫模型(HMM,hidden Markov model)是可用于标注问题的统计学模型,描述由隐藏的马尔可夫链随机生成观测序列的过程,属于生成模型.HMM模型主要用于语音识别,自然语言处理,生物 ...

  8. 基于Noisy Channel Model和Viterbi算法的词性标注问题

    给定一个英文语料库,里面有很多句子,已经做好了分词,/前面的是词,后面的表示该词的词性并且每句话由句号分隔,如下图所示 对于一个句子S,句子中每个词语\(w_i\)标注了对应的词性\(z_i\).现在 ...

  9. Viterbi 算法 Python实现 [NLP学习一]

    最近思考了一下未来,结合老师的意见,还是决定挑一个方向开始研究了,虽然个人更喜欢鼓捣.深思熟虑后,结合自己的兴趣点,选择了NLP方向,感觉比纯粹的人工智能.大数据之类的方向有趣多了,个人还是不适合纯粹 ...

  10. 隐马尔科夫模型及Viterbi算法的应用

    作者:jostree 转载请注明出处 http://www.cnblogs.com/jostree/p/4335810.html 一个例子: 韦小宝使用骰子进行游戏,他有两种骰子一种正常的骰子,还有一 ...

随机推荐

  1. 记XShell无法连接虚拟机中的Linux,但Linux系统中可以连接外网。

    如题. 原本设置如下: 本地机IP 为192.168.43.XXX VMWare中"虚拟机网络编辑器"中子网设置为192.168.39.0. 虚拟机中IP为192.168.39.1 ...

  2. 题解 洛谷 P2612 【[ZJOI2012]波浪】DP+高精

    题目描述 题目传送门 分析 因为有绝对值不好处理,所以我们强制从小到大填数 设 \(f[i][j][p][o]\) 为当前填到了第 \(i\) 个数,波动强度为 \(j\),有 \(p\) 个连续段并 ...

  3. 生成微博授权url接口

    1.创建apps/oauth模块进行oauth认证 '''2.1 在apps文件夹下新建应用: oauth''' cd syl/apps python ../manage.py startapp oa ...

  4. FPGA 串口

    VerilogHDL那些事儿_建模篇(黑金FPGA开发板配套教程) 作者:akuei2 说明:参照该书将部分程序验证学习一遍 学习时间:2014年5月3号 主要收获: 1. 对串口有初步了解: 2. ...

  5. Beta冲刺——总结

    这个作业属于哪个课程 软件工程 (福州大学至诚学院 - 计算机工程系) 这个作业要求在哪里 Beta 冲刺 这个作业的目标 团队进行Alpha冲刺 作业正文 正文 其他参考文献 无 团队GitHub地 ...

  6. day1(Django路径问题)

    1.python中的三种路径 1.1 操作系统文件绝对路径 django 静态文件查找, 模板查找(第一种) # 去配置好的 文件夹 中查找指定的文件 BASE_DIR = os.path.dirna ...

  7. PyQt开发样例: 利用QToolBox开发的桌面工具箱Demo

    老猿Python博文目录 专栏:使用PyQt开发图形界面Python应用 老猿Python博客地址 一.引言 toolBox工具箱是一个容器部件,对应类为QToolBox,在其内有一列从上到下顺序排列 ...

  8. 第15.22节 PyQt(Python+Qt)入门学习:Model/View架构详解

    老猿Python博文目录 专栏:使用PyQt开发图形界面Python应用 老猿Python博客地址 一.简介 在PyQt和Qt中,Model/View架构是图形界面开发时用于管理数据和界面展现方式的关 ...

  9. PyQt(Python+Qt)学习随笔:布局控件layout的layoutSizeConstraint属性

    在Qt Designer中布局控件有4个,分别是Vertical Layout(垂直布局).Horizontal Layout(水平布局).Grid Layout(网格布局).Form Layout( ...

  10. 从零开始的xxe学习

    本文介绍了一个菜鸡对xxe的一步步学习(内容多来源于大佬的博客,先感谢一波) 涉及知识点: (1)xxe 目录: 解析: 1.xxe是什么(不详解了,网上很多的) XXE(XML External E ...