HDU-6703 array (线段树)
题意
一个长度为n的排列a,\(\forall i\in [1,n] ,1\le a_i \le n\) , m次操作,每次操作:
- (1,pos),把 \(a_{pos}\) 变为\(a_{pos} + 10000000\)
- (2,r,k) ,找到最小的一个值x,使得\(\forall i\in [1,r], x \neq a_i, x\ge k\)
数据范围:
\(1\le n\le 100000,1\le m\le 100000,1\le r\le n,1\le k\le n\)
分析
观察每个数的值域,都在\([1,n]\) 之间,而k的范围也在\([1,n]\) 之间,所以答案最终只会在\([1,n+1]\) 之间。
操作1会使一个数字\(a_i\)加1e7,而这个数已经远远超过n和k,所以也就代表着\(a_i\)从原序列中被删除了。
由第一条可以知道,每次查询的答案只会在[k,n+1]上,而序列中的数只会在[1,n](进行过1操作的直接删除,不再考虑)。所以我们可以每次查询序列中有没有出现在\([k,n]\) 的数,并且他们的下标是大于r的。如果之前删除过一个数\(x\),那么就把这个下标变成大于n就可以了, 这样对于\(k\le x\) 的情况,\(x\) 所对应的下标都是大于\(r\) 的(也就是把x作为候选答案)
如何维护查询所需要的东西?权值线段树维护区间权值最大下标
- 对于操作1,直接让单点的下标变为n+1
- 对于操作2,找被区间[k,n]的包含的结点,对于这些结点,如果左节点的最大下标大于r,则递归左节点,否则看右结点,如果都没有,就返回n+1(代表答案候选为n+1)。而递归到终点时,看单点维护的下标是否大于r,如果大于,就返回单点的权值,否则返回n+1.
#include <bits/stdc++.h>
using namespace std;
const int N = 1e5+10;
const int inf = 0x3f3f3f3f;
int a[N],b[N];
struct SegTree{
int l,r,id;
}t[4*N];
int n,m;
void build(int p,int l,int r){
t[p].l = l;t[p].r = r;
if(l == r){
t[p].id = b[l];
return;
}
int mid = l + r >> 1;
build(p*2,l,mid);
build(p*2+1,mid+1,r);
t[p].id = max(t[p*2].id,t[p*2+1].id);
}
void change(int p,int x){
if(t[p].l == t[p].r && t[p].l == x){
t[p].id = n+1;return;//删除该数,将维护的下标变为n+1
}
int mid = t[p].l + t[p].r >> 1;
if(x <= mid)change(p*2,x);
else if(x > mid)change(p*2+1,x);
t[p].id = max(t[p*2].id,t[p*2+1].id);
}
int query(int p,int l,int r,int x){
if(t[p].l >= l && t[p].r <= r){//找到被[k,n]完全包含的结点
if(t[p].l == t[p].r){
if(t[p].id > x)
return t[p].l;
return n + 1;
}
if(t[p*2].id > x)return query(p*2,l,r,x);
if(t[p*2+1].id > x)return query(p*2+1,l,r,x);
return n + 1;
}
int mid = t[p].l + t[p].r >> 1;
int res = n+1;
if(mid >= l){
res = query(p*2,l,r,x);
}
if(mid < r){
res = min(res, query(p*2+1,l,r,x));
}
return res;
}
int main(){
int T;scanf("%d",&T);
while(T--){
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)b[i] = 0;
for(int i=1;i<=n;i++){
scanf("%d",&a[i]);
b[a[i]] = i;//因为时排列,每个a[i]都不一样
}
build(1,1,n);
int res = 0;
while(m--){
int op,x,y;
scanf("%d%d",&op,&x);
if(op == 1){
x ^= res;
change(1,a[x]);
}
else{
scanf("%d",&y);x^=res;y^=res;
res = query(1,y,n,x);
printf("%d\n",res);
}
}
}
return 0;
}
HDU-6703 array (线段树)的更多相关文章
- 2019年CCPC网络赛 HDU 6703 array【权值线段树】
题目大意:给出一个n个元素的数组A,A中所有元素都是不重复的[1,n].有两种操作:1.将pos位置的元素+1e72.查询不属于[1,r]中的最小的>=k的值.强制在线. 题解因为数组中的值唯一 ...
- hdu 4031 attack 线段树区间更新
Attack Time Limit: 5000/3000 MS (Java/Others) Memory Limit: 65768/65768 K (Java/Others)Total Subm ...
- hdu 4288 离线线段树+间隔求和
Coder Time Limit: 20000/10000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Su ...
- hdu 3016 dp+线段树
Man Down Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total S ...
- [Codeforces 266E]More Queries to Array...(线段树+二项式定理)
[Codeforces 266E]More Queries to Array...(线段树+二项式定理) 题面 维护一个长度为\(n\)的序列\(a\),\(m\)个操作 区间赋值为\(x\) 查询\ ...
- hdu 6703 array(权值线段树)
Problem Description You are given an array a1,a2,...,an(∀i∈[1,n],1≤ai≤n). Initially, each element of ...
- 【Codeforces718C】Sasha and Array 线段树 + 矩阵乘法
C. Sasha and Array time limit per test:5 seconds memory limit per test:256 megabytes input:standard ...
- HDU 5877 dfs+ 线段树(或+树状树组)
1.HDU 5877 Weak Pair 2.总结:有多种做法,这里写了dfs+线段树(或+树状树组),还可用主席树或平衡树,但还不会这两个 3.思路:利用dfs遍历子节点,同时对于每个子节点au, ...
- codeforces 719E E. Sasha and Array(线段树)
题目链接: E. Sasha and Array time limit per test 5 seconds memory limit per test 256 megabytes input sta ...
- HDU 3308 LCIS (线段树区间合并)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3308 题目很好懂,就是单点更新,然后求区间的最长上升子序列. 线段树区间合并问题,注意合并的条件是a[ ...
随机推荐
- linux下如何看系统日志及Out Of Memery
1.一个Out Of Memery(OOM)导致的崩溃. linux系统经常会由于资源的问题导致自己的程序莫名被杀掉,可以从linux的系统日志中找到答案: vi /var/log/message - ...
- 剑指offer 面试题9:用两个栈实现队列
题目描述 用两个栈来实现一个队列,完成队列的Push和Pop操作. 队列中的元素为int类型. 使用栈实现队列的下列操作:push(x) -- 将一个元素放入队列的尾部.pop() -- 从队列首部移 ...
- Manjaro Linux 5.9.11-3安装和配置全局截图工具FlameShot教程
背景说明 截图工具是日常适用频率较高的一种系统工具,在Linux下也有不少常用截图工具,如deepin-screenshot等,但是今天我们要介绍的是FlameShot--一款更加精致的Linux全局 ...
- torch.nn 的本质
torch.nn 的本质 PyTorch 提供了各种优雅设计的 modules 和类 torch.nn,torch.optim,Dataset 和 DataLoader 来帮助你创建并训练神经网络.为 ...
- 【ORA】 ORA-01031:权限不足的问题
今天创建一个用户,赋予dba权限,在plsql中选择sysdba登录,但是报错 ORA-01031 在网上找了好久最后的解决办法是 不仅仅要有dba权限 还要有这个权限: grant all priv ...
- ctfhub技能树—文件上传—双写后缀
双写后缀绕过 用于只将文件后缀名,例如"php"字符串过滤的场合: 例如:上传时将Burpsuite截获的数据包中文件名[evil.php]改为[evil.pphphp],那么过滤 ...
- Databricks 第7篇:管理Secret
有时,访问数据要求您通过JDBC对外部数据源进行身份验证,可以使用Azure Databricks Secret来存储凭据,并在notebook和job中引用它们,而不是直接在notebook中输入凭 ...
- consul是什么?
consul概念: consul是用来做注册中心的 他和eureka是一样的 注册中心一般都是集群的形式存在保证高可用 consul像是一个nosql 存储着键值对 可以做存储consul是c/s架构 ...
- 【Android】编译报错 Annotation processors must be explicitly declared now 解决方案
问题 在网上下载一个demo,因为版本久远,里面添加了本地 Butter Knife 的jar包,在编译时报错 Annotation processors must be explicitly dec ...
- C#高级编程第11版 - 第三章 索引
[1]3.1 创建及使用类 1.构造函数:构造函数的名字与类名相同: 使用 new 表达式创建类的对象或者结构(例如int)时,会调用其构造函数.并且通常初始化新对象的数据成员. 除非类是静态的,否则 ...