LINK:区间

没想到尺取法.

先说暴力 可以发现答案一定可以转换到端点处 所以在每个端点从小到大扫描线段就能得到答案 复杂度\(n\cdot m\)

再说我的做法 想到了二分 可以进行二分答案 从左到右加入线段 加到线段的每个端点的时候 将所有加入的线段 插到主席树里面 考虑判定当前ans合法.

每加入一条线段权值为v 那么意味着 权值在 v-ans这个权值区间中加1 且看一下之前是否存在相同权值的线段加入 更新其本身.

这样查一下全局最大值即可完成判定 实现起来非常繁琐 复杂度\(nlog^2n\) 真的是人傻 什么垃圾算法都能想出来就是想不出来正解.

考虑正解 考虑答案ans 其权值线段的最大最小值为l,r 那么意味着 l-r这个权值区间中的端点被覆盖次数>=m.

将所以线段由小到大排序 此时找到这个l,r 可以利用尺取法轻松求出 利用线段树判定即可.

复杂度\(nlogn\)

code
//#include<bits/stdc++.h>
#include<iostream>
#include<cstdio>
#include<ctime>
#include<cctype>
#include<queue>
#include<deque>
#include<stack>
#include<iostream>
#include<iomanip>
#include<cstdio>
#include<cstring>
#include<string>
#include<ctime>
#include<cmath>
#include<cctype>
#include<cstdlib>
#include<queue>
#include<deque>
#include<stack>
#include<vector>
#include<algorithm>
#include<utility>
#include<bitset>
#include<set>
#include<map>
#define ll long long
#define db double
#define INF 1000000001
#define ldb long double
#define pb push_back
#define put_(x) printf("%d ",x);
#define get(x) x=read()
#define gt(x) scanf("%d",&x)
#define gi(x) scanf("%lf",&x)
#define put(x) printf("%d\n",x)
#define putl(x) printf("%lld\n",x)
#define rep(p,n,i) for(RE int i=p;i<=n;++i)
#define go(x) for(int i=lin[x],tn=ver[i];i;tn=ver[i=nex[i]])
#define fep(n,p,i) for(RE int i=n;i>=p;--i)
#define vep(p,n,i) for(RE int i=p;i<n;++i)
#define pii pair<int,int>
#define mk make_pair
#define RE register
#define P 1000000007ll
#define gf(x) scanf("%lf",&x)
#define pf(x) ((x)*(x))
#define uint unsigned long long
#define ui unsigned
#define EPS 1e-4
#define sq sqrt
#define S second
#define F first
#define mod 998244353
#define l(p) t[p].l
#define r(p) t[p].r
#define sum(p) t[p].sum
#define zz p<<1
#define yy p<<1|1
using namespace std;
char *fs,*ft,buf[1<<15];
inline char gc()
{
return (fs==ft&&(ft=(fs=buf)+fread(buf,1,1<<15,stdin),fs==ft))?0:*fs++;
}
inline int read()
{
RE int x=0,f=1;RE char ch=gc();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=gc();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=gc();}
return x*f; }
const int MAXN=500010;
int n,m,cnt,num;
struct wy
{
int l,r;
int sum;
}t[MAXN<<3],s[MAXN];
inline int cmp(wy a,wy b){return a.sum<b.sum;}
int a[MAXN],b[MAXN],tag[MAXN<<3],c[MAXN<<1];
inline void build(int p,int l,int r)
{
l(p)=l;r(p)=r;
if(l==r)return;
int mid=(l+r)>>1;
build(zz,l,mid);
build(yy,mid+1,r);
}
inline void pushdown(int p)
{
tag[zz]+=tag[p];
tag[yy]+=tag[p];
sum(zz)+=tag[p];
sum(yy)+=tag[p];
tag[p]=0;
}
inline void change(int p,int l,int r,int x)
{
if(l<=l(p)&&r>=r(p))return sum(p)+=x,tag[p]+=x,void();
int mid=(l(p)+r(p))>>1;
if(tag[p])pushdown(p);
if(l<=mid)change(zz,l,r,x);
if(r>mid)change(yy,l,r,x);
sum(p)=max(sum(zz),sum(yy));
}
int main()
{
//freopen("1.in","r",stdin);
get(n);get(m);
rep(1,n,i)
{
get(s[i].l);get(s[i].r);
c[++num]=s[i].l;
c[++num]=s[i].r;
}
sort(c+1,c+1+num);
rep(1,num,i)if(i==1||c[i]!=c[i-1])c[++cnt]=c[i];
rep(1,n,i)
{
s[i].sum=s[i].r-s[i].l;
s[i].r=lower_bound(c+1,c+1+cnt,s[i].r)-c;
s[i].l=lower_bound(c+1,c+1+cnt,s[i].l)-c;
}
sort(s+1,s+1+n,cmp);
build(1,1,cnt);
int L=1,R=1,ans=INF;
while(R<=n)
{
while(sum(1)<m&&R<=n)
{
change(1,s[R].l,s[R].r,1);
//put(sum(1));
++R;
}
while(sum(1)>=m)
{
ans=min(ans,s[R-1].sum-s[L].sum);
change(1,s[L].l,s[L].r,-1);
++L;
}
}
put(ans==INF?-1:ans);
return 0;
}

luogu P1712 [NOI2016]区间 贪心 尺取法 线段树 二分的更多相关文章

  1. 【题解】P1712 [NOI2016]区间(贪心+线段树)

    [题解]P1712 [NOI2016]区间(贪心+线段树) 一个observe是,对于一个合法的方案,将其线段长度按照从大到小排序后,他极差的来源是第一个和最后一个.或者说,读入的线段按照长度分类后, ...

  2. 洛谷P1712 [NOI2016]区间 尺取法+线段树+离散化

    洛谷P1712 [NOI2016]区间 noi2016第一题(大概是签到题吧,可我还是不会) 链接在这里 题面可以看链接: 先看题意 这么大的l,r,先来个离散化 很容易,我们可以想到一个结论 假设一 ...

  3. Luogu P1712 [NOI2016]区间(线段树)

    P1712 [NOI2016]区间 题意 题目描述 在数轴上有 \(N\) 个闭区间 \([l_1,r_1],[l_2,r_2],...,[l_n,r_n]\) .现在要从中选出 \(M\) 个区间, ...

  4. luogu1712 区间 (尺取法+线段树)

    先把区间按照长度从小到大排序,然后用尺取法来做 大概就是先一点一点把区间算上 直到某个点被覆盖了m次,然后一点一点把最前面的区间扔掉,直到没有点被覆盖m次,这样反复做(相当于是它选择的区间左右端点在那 ...

  5. codeforces 652C C. Foe Pairs(尺取法+线段树查询一个区间覆盖线段)

    题目链接: C. Foe Pairs time limit per test 1 second memory limit per test 256 megabytes input standard i ...

  6. luogu P1712 [NOI2016]区间

    题目描述 在数轴上有 n个闭区间 [l1,r1],[l2,r2],...,[ln,rn].现在要从中选出 m 个区间,使得这 m个区间共同包含至少一个位置.换句话说,就是使得存在一个 x,使得对于每一 ...

  7. BZOJ4653 尺取法 + 线段树

    https://www.lydsy.com/JudgeOnline/problem.php?id=4653 首先很容易想到离散之后排序,用线段树或者树状数组去维护. 问题在于按照什么排序,如果按照左端 ...

  8. [NOI2016]区间 题解(决策单调性+线段树优化)

    4653: [Noi2016]区间 Time Limit: 60 Sec  Memory Limit: 256 MBSubmit: 1593  Solved: 869[Submit][Status][ ...

  9. BZOJ 4653 [Noi2016]区间(Two pointers+线段树)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=4653 [题目大意] 在数轴上有n个闭区间 [l1,r1],[l2,r2],...,[l ...

随机推荐

  1. Mariadb之半同步复制集群配置

    首先我们来了解下在mariadb/mysql数据库主从复制集群中什么是同步,什么是异步,什么是半同步:所谓同步就是指主节点发生写操作事件,它不会立刻返回,而是等到从节点接收到主节点发送过来的写操作事件 ...

  2. YAML & JSON &XML如何选择

    前言 本文翻译https://www.csestack.org/yaml-vs-json-vs-xml-difference/,下文会针对当前现有的数据序列化语言做下梳理.重点突出YAML是什么,优缺 ...

  3. NumPy基础知识图谱

    所有内容整理自<利用Python进行数据分析>,使用MindMaster Pro 7.3制作,emmx格式,源文件已经上传Github,需要的同学转左上角自行下载.该图谱只是NumPy的基 ...

  4. scala 数据结构(三):元组Tuple

    1 元组Tuple-元组的基本使用 基本介绍 元组也是可以理解为一个容器,可以存放各种相同或不同类型的数据. 说的简单点,就是将多个无关的数据封装为一个整体,称为元组, 最多的特点灵活,对数据没有过多 ...

  5. Maven 专题(四):什么是Maven

    1 Maven 简介 Maven 是 Apache 软件基金会组织维护的一款自动化构建工具,专注服务于 Java 平台的项目构建和 依赖管理.Maven 这个单词的本意是:专家,内行.读音是['meɪ ...

  6. redis(八):Redis 哈希(Hash)

    Redis 哈希(Hash) Redis hash 是一个 string 类型的 field 和 value 的映射表,hash 特别适合用于存储对象. Redis 中每个 hash 可以存储 232 ...

  7. oracle 12c数据库在Windows环境下的安装

    ​    因为菜鸟小白之前做着一些数据库审计产品的测试,接下来我会分享一些关于数据库安装和通过python的访问数据库的知识 安装 首先我们需要下载一个oracle 12c的安装程序,解压后右键点击“ ...

  8. .Net Core微服务入门全纪录(完结)——Ocelot与Swagger

    Tips:本篇已加入系列文章阅读目录,可点击查看更多相关文章. 前言 上一篇[.Net Core微服务入门全纪录(八)--Docker Compose与容器网络]完成了docker-compose.y ...

  9. 30页软件测试人面试宝典文档资料,助你拿下了百度、美团、字节跳动、小米等大厂的offer【内含答案】

    前言:看了一下桌边的日历,新的6月,已经过去5天了.明天又是周六了,大家准备怎么度过呢?趁着大家周末给大家分享一个软件测试工程师面试题汇总. 拿到大厂的offer一直是软件测试朋友的一个目标,我是如何 ...

  10. DEBUG ArrayList

    1,ArrayList面试必问 说说ArrayList和LinkedList的区别? ArrayList基于数组实现,LinkedList基于链表实现,不同的数据结构决定了ArrayList查询效率比 ...