LINK:最短路

一张仙人掌图 求图中两点最短路。

\(n<=10000,Q<=10000,w>=1\)

考虑边数是多少 m>=n-1 对于一张仙人掌图 考虑先构建出来dfs树 非树边会形成环 环不可能相交 也没有自环 那么说一每形成一个环需要一条树边和非树边。

所以m<=2n-2.

求图中两点最短路。离线做也不太好做。考虑一下一个点到另外一个点 会经过一些割点 必经之点 那么任意两个割点之间的最短路有两条。

显然其中一条永远没用 考虑构建出圆方树 边权dfs的时候处理一下即可。求距离树上求LCA即可。

不知道哪里挂了 回来再调。

4.6 update:闲来无事拍了一下 发现了自己的思想漏洞。

之前少处理了一种情况 考虑一个环内 两点各自的儿子之间的最短距离。

他们的LCA为方点 这说明了要爬到这个环内然后然后 对于环有两条路径 所以需要特判 我之前只注意到环内点了 所以挂了。

正确的是 判LCA 然后x向上跳 y向上跳 然后计算距离即可。

计算环的距离时我暴力了一点 求了一发 L 和 R数组.

const int MAXN=20010;
int n,m,Q,len=1,cnt,top,sum,len1,id,cc;
int dfn[MAXN],low[MAXN],s[MAXN],f[MAXN][20],a[MAXN],b[MAXN],Log[MAXN],L[MAXN],R[MAXN];
int lin[MAXN],ver[MAXN<<1],nex[MAXN<<1],e[MAXN<<1],d[MAXN],dis[MAXN],w[MAXN],h[MAXN];
int lin1[MAXN],ver1[MAXN<<1],nex1[MAXN<<1],e1[MAXN<<1];
inline void add(int x,int y,int z){ver[++len]=y;nex[len]=lin[x];lin[x]=len;e[len]=z;}
inline void add1(int x,int y,int z){ver1[++len1]=y;nex1[len1]=lin1[x];lin1[x]=len1;e1[len1]=z;}
inline void solve(int x)
{
add1(x,id,0);
rep(2,sum,i)
{
L[a[i]]=dis[a[i]]-dis[a[1]];R[a[i]]=b[a[i]]-dis[a[1]];
if(i+1<=sum)
{
b[a[i+1]]=dis[a[i]]-dis[a[i+1]]+b[a[i]];
//if(dis[a[i]]<=dis[a[i+1]])cout<<"ww"<<endl;
}
w[a[i]]=min(dis[a[i]],b[a[i]]);
}
rep(2,sum,i)add1(id,a[i],w[a[i]]-dis[a[1]]);
}
inline void dfs(int x)
{
dfn[x]=low[x]=++cnt;
s[++top]=x;
go(x)
{
if(!dfn[tn])
{
dis[tn]=dis[x]+e[i];
h[tn]=i;dfs(tn);
low[x]=min(low[x],low[tn]);
if(low[tn]>=dfn[x])
{
int y=0;sum=0;
a[++sum]=x;
while(y!=tn)
{
y=s[top--];
a[++sum]=y;
}
++id;solve(x);
}
}
else
{
low[x]=min(low[x],dfn[tn]);
if((i^1)!=h[x])b[x]=dis[tn]+e[i];
}
}
}
inline void dfs(int x,int fa)
{
d[x]=d[fa]+1;f[x][0]=fa;
rep(1,Log[d[x]],i)f[x][i]=f[f[x][i-1]][i-1];
for(int i=lin1[x];i;i=nex1[i])
{
int tn=ver1[i];
dis[tn]=dis[x]+e1[i];
dfs(tn,x);
}
}
inline int LCA(int x,int y)
{
if(d[x]<d[y])swap(x,y);
fep(Log[d[x]],0,i)
if(d[f[x][i]]>=d[y])x=f[x][i];
if(x==y)return x;
fep(Log[d[x]],0,i)
if(f[x][i]!=f[y][i])x=f[x][i],y=f[y][i];
return f[x][0];
}
inline int get_x(int x,int w)
{
fep(Log[d[x]],0,i)if(d[f[x][i]]>=w)x=f[x][i];
return x;
}
int main()
{
freopen("1.in","r",stdin);
get(n);get(m);get(Q);
rep(1,m,i)
{
int x,y,z;
get(x);get(y);get(z);
add(x,y,z);add(y,x,z);
b[i]=INF;
}
id=n;dfs(1);
rep(2,id,i)Log[i]=Log[i>>1]+1;
dfs(1,0);
rep(1,Q,i)
{
int get(x);int get(y);
int lca=LCA(x,y);
if(lca>n)
{
int xx=get_x(x,d[lca]+1);
int yy=get_x(y,d[lca]+1);
if(L[xx]<L[yy])swap(xx,yy);
int ww=min(L[xx]-L[yy],R[xx]+L[yy]);
put(ww+dis[x]-dis[xx]+dis[y]-dis[yy]);continue;
}
put(dis[x]+dis[y]-dis[lca]*2);
}
return 0;
}

bzoj 2125 最短路 点双 圆方树的更多相关文章

  1. UOJ#23. 【UR #1】跳蚤国王下江南 仙人掌 Tarjan 点双 圆方树 点分治 多项式 FFT

    原文链接https://www.cnblogs.com/zhouzhendong/p/UOJ23.html 题目传送门 - UOJ#23 题意 给定一个有 n 个节点的仙人掌(可能有重边). 对于所有 ...

  2. 【BZOJ】2125: 最短路 圆方树(静态仙人掌)

    [题意]给定带边权仙人掌图,Q次询问两点间最短距离.n,m,Q<=10000 [算法]圆方树处理仙人掌问题 [题解]树上的两点间最短路问题,常用倍增求LCA解决,考虑扩展到仙人掌图. 先对仙人掌 ...

  3. BZOJ.2125.最短路(仙人掌 圆方树)

    题目链接 圆方树.做题思路不写了.. 就是当LCA是方点时跳进那个环可以分类讨论一下用树剖而不必须用倍增: 如果v是u的(唯一的那个)重儿子,那么u的DFS序上+1的点即是要找的:否则v会引出一条新的 ...

  4. BZOJ 压力 tarjan 点双联通分量+树上差分+圆方树

    题意 如今,路由器和交换机构建起了互联网的骨架.处在互联网的骨干位置的核心路由器典型的要处理100Gbit/s的网络流量. 他们每天都生活在巨大的压力之下.小强建立了一个模型.这世界上有N个网络设备, ...

  5. 【BZOJ2125】最短路(仙人掌,圆方树)

    [BZOJ2125]最短路(仙人掌,圆方树) 题面 BZOJ 求仙人掌上两点间的最短路 题解 终于要构建圆方树啦 首先构建出圆方树,因为是仙人掌,和一般图可以稍微的不一样 直接\(tarjan\)缩点 ...

  6. 【刷题】BZOJ 2125 最短路

    Description 给一个N个点M条边的连通无向图,满足每条边最多属于一个环,有Q组询问,每次询问两点之间的最短路径. Input 输入的第一行包含三个整数,分别表示N和M和Q 下接M行,每行三个 ...

  7. BZOJ2125 最短路 圆方树、倍增

    传送门 对仙人掌建立圆方树,然后对边定权 对于圆点和圆点之间的边,是原来仙人掌上的桥,边权保持不变 对于圆点和方点之间的边,将圆方树看做以一个圆点为根的有根树之后,一个方点的父亲一定是一个圆点.对于这 ...

  8. BZOJ.2125.最短路(仙人掌 最短路Dijkstra)

    题目链接 多次询问求仙人掌上两点间的最短路径. 如果是在树上,那么求LCA就可以了. 先做着,看看能不能把它弄成树. 把仙人掌看作一个图(实际上就是),求一遍根节点到每个点的最短路dis[i]. 对于 ...

  9. 2018.07.25 bzoj2125: 最短路(圆方树+倍增)

    传送门 人生的第一道仙人掌. 这道题求是仙人掌上的最短路. 先建出圆方树,然后用倍增跑最短路,当lca" role="presentation" style=" ...

随机推荐

  1. 03.springboot 整合RabbitMQ

    1.引入依赖 <dependency> <groupId>org.springframework.boot</groupId> <artifactId> ...

  2. 线性动归之Wooden Sticks

    题面:现在有n(n<5000)个木头,每个木头都有长度l和重量w(l<10000,w<10000),现在你要对木头进行加工: 1.第一根木头需要先花费1min: 2.加工完第i跟木头 ...

  3. JS中同步和异步

    首先,我们要知道,JavaScript的本质是一门浏览器脚本语言,在执行的时候是一行一行的执行,只有前面的代码执行完了才会执行后面的代码.JS是单线程语言指的就是这个意思. 同步和异步其实在进行任务执 ...

  4. [TZOJ] 平台训练-V1

    日常训练 训练网址:http://www.tzcoder.cn/ 1001: 整数求和 描述求两个整数之和.输入输入数据只包括两个整数A和B.输出两个整数的和.样例输入1 2样例输出3题目来源TZOJ ...

  5. WPF中国地图

    实现鼠标移动到某个地区显示Popup弹框 1,地图 <Grid Margin="0,0,0,0" Grid.Row="1"> <Path St ...

  6. 用Helm部署Kubernetes应用,支持多环境部署与版本回滚

    1 前言 Helm是优秀的基于Kubernetes的包管理器.利用Helm,可以快速安装常用的Kubernetes应用,可以针对同一个应用快速部署多套环境,还可以实现运维人员与开发人员的职责分离.现在 ...

  7. DVWA学习记录 PartⅨ

    XSS(DOM) 1. 题目 XSS,全称Cross Site Scripting,即跨站脚本攻击,某种意义上也是一种注入攻击,是指攻击者在页面中注入恶意的脚本代码,当受害者访问该页面时,恶意代码会在 ...

  8. bzoj4582[Usaco2016 Open]Diamond Collector

    bzoj4582[Usaco2016 Open]Diamond Collector 题意: n个钻石,每个都有一个大小,现在将其装进2个盒子里,每个盒子里的钻石最大的与最小的大小不能超过k,问最多能装 ...

  9. Ethical Hacking - GAINING ACCESS(10)

    CLIENT SIDE ATTACKS Use if server-side attacks fail. If IP is probably useless. Require user interac ...

  10. Web Scraping using Python Scrapy_BS4 - using Scrapy and Python(1)

    Create a new Scrapy project first. scrapy startproject projectName . Open this project in Visual Stu ...