LINK:最短路

一张仙人掌图 求图中两点最短路。

\(n<=10000,Q<=10000,w>=1\)

考虑边数是多少 m>=n-1 对于一张仙人掌图 考虑先构建出来dfs树 非树边会形成环 环不可能相交 也没有自环 那么说一每形成一个环需要一条树边和非树边。

所以m<=2n-2.

求图中两点最短路。离线做也不太好做。考虑一下一个点到另外一个点 会经过一些割点 必经之点 那么任意两个割点之间的最短路有两条。

显然其中一条永远没用 考虑构建出圆方树 边权dfs的时候处理一下即可。求距离树上求LCA即可。

不知道哪里挂了 回来再调。

4.6 update:闲来无事拍了一下 发现了自己的思想漏洞。

之前少处理了一种情况 考虑一个环内 两点各自的儿子之间的最短距离。

他们的LCA为方点 这说明了要爬到这个环内然后然后 对于环有两条路径 所以需要特判 我之前只注意到环内点了 所以挂了。

正确的是 判LCA 然后x向上跳 y向上跳 然后计算距离即可。

计算环的距离时我暴力了一点 求了一发 L 和 R数组.

const int MAXN=20010;
int n,m,Q,len=1,cnt,top,sum,len1,id,cc;
int dfn[MAXN],low[MAXN],s[MAXN],f[MAXN][20],a[MAXN],b[MAXN],Log[MAXN],L[MAXN],R[MAXN];
int lin[MAXN],ver[MAXN<<1],nex[MAXN<<1],e[MAXN<<1],d[MAXN],dis[MAXN],w[MAXN],h[MAXN];
int lin1[MAXN],ver1[MAXN<<1],nex1[MAXN<<1],e1[MAXN<<1];
inline void add(int x,int y,int z){ver[++len]=y;nex[len]=lin[x];lin[x]=len;e[len]=z;}
inline void add1(int x,int y,int z){ver1[++len1]=y;nex1[len1]=lin1[x];lin1[x]=len1;e1[len1]=z;}
inline void solve(int x)
{
add1(x,id,0);
rep(2,sum,i)
{
L[a[i]]=dis[a[i]]-dis[a[1]];R[a[i]]=b[a[i]]-dis[a[1]];
if(i+1<=sum)
{
b[a[i+1]]=dis[a[i]]-dis[a[i+1]]+b[a[i]];
//if(dis[a[i]]<=dis[a[i+1]])cout<<"ww"<<endl;
}
w[a[i]]=min(dis[a[i]],b[a[i]]);
}
rep(2,sum,i)add1(id,a[i],w[a[i]]-dis[a[1]]);
}
inline void dfs(int x)
{
dfn[x]=low[x]=++cnt;
s[++top]=x;
go(x)
{
if(!dfn[tn])
{
dis[tn]=dis[x]+e[i];
h[tn]=i;dfs(tn);
low[x]=min(low[x],low[tn]);
if(low[tn]>=dfn[x])
{
int y=0;sum=0;
a[++sum]=x;
while(y!=tn)
{
y=s[top--];
a[++sum]=y;
}
++id;solve(x);
}
}
else
{
low[x]=min(low[x],dfn[tn]);
if((i^1)!=h[x])b[x]=dis[tn]+e[i];
}
}
}
inline void dfs(int x,int fa)
{
d[x]=d[fa]+1;f[x][0]=fa;
rep(1,Log[d[x]],i)f[x][i]=f[f[x][i-1]][i-1];
for(int i=lin1[x];i;i=nex1[i])
{
int tn=ver1[i];
dis[tn]=dis[x]+e1[i];
dfs(tn,x);
}
}
inline int LCA(int x,int y)
{
if(d[x]<d[y])swap(x,y);
fep(Log[d[x]],0,i)
if(d[f[x][i]]>=d[y])x=f[x][i];
if(x==y)return x;
fep(Log[d[x]],0,i)
if(f[x][i]!=f[y][i])x=f[x][i],y=f[y][i];
return f[x][0];
}
inline int get_x(int x,int w)
{
fep(Log[d[x]],0,i)if(d[f[x][i]]>=w)x=f[x][i];
return x;
}
int main()
{
freopen("1.in","r",stdin);
get(n);get(m);get(Q);
rep(1,m,i)
{
int x,y,z;
get(x);get(y);get(z);
add(x,y,z);add(y,x,z);
b[i]=INF;
}
id=n;dfs(1);
rep(2,id,i)Log[i]=Log[i>>1]+1;
dfs(1,0);
rep(1,Q,i)
{
int get(x);int get(y);
int lca=LCA(x,y);
if(lca>n)
{
int xx=get_x(x,d[lca]+1);
int yy=get_x(y,d[lca]+1);
if(L[xx]<L[yy])swap(xx,yy);
int ww=min(L[xx]-L[yy],R[xx]+L[yy]);
put(ww+dis[x]-dis[xx]+dis[y]-dis[yy]);continue;
}
put(dis[x]+dis[y]-dis[lca]*2);
}
return 0;
}

bzoj 2125 最短路 点双 圆方树的更多相关文章

  1. UOJ#23. 【UR #1】跳蚤国王下江南 仙人掌 Tarjan 点双 圆方树 点分治 多项式 FFT

    原文链接https://www.cnblogs.com/zhouzhendong/p/UOJ23.html 题目传送门 - UOJ#23 题意 给定一个有 n 个节点的仙人掌(可能有重边). 对于所有 ...

  2. 【BZOJ】2125: 最短路 圆方树(静态仙人掌)

    [题意]给定带边权仙人掌图,Q次询问两点间最短距离.n,m,Q<=10000 [算法]圆方树处理仙人掌问题 [题解]树上的两点间最短路问题,常用倍增求LCA解决,考虑扩展到仙人掌图. 先对仙人掌 ...

  3. BZOJ.2125.最短路(仙人掌 圆方树)

    题目链接 圆方树.做题思路不写了.. 就是当LCA是方点时跳进那个环可以分类讨论一下用树剖而不必须用倍增: 如果v是u的(唯一的那个)重儿子,那么u的DFS序上+1的点即是要找的:否则v会引出一条新的 ...

  4. BZOJ 压力 tarjan 点双联通分量+树上差分+圆方树

    题意 如今,路由器和交换机构建起了互联网的骨架.处在互联网的骨干位置的核心路由器典型的要处理100Gbit/s的网络流量. 他们每天都生活在巨大的压力之下.小强建立了一个模型.这世界上有N个网络设备, ...

  5. 【BZOJ2125】最短路(仙人掌,圆方树)

    [BZOJ2125]最短路(仙人掌,圆方树) 题面 BZOJ 求仙人掌上两点间的最短路 题解 终于要构建圆方树啦 首先构建出圆方树,因为是仙人掌,和一般图可以稍微的不一样 直接\(tarjan\)缩点 ...

  6. 【刷题】BZOJ 2125 最短路

    Description 给一个N个点M条边的连通无向图,满足每条边最多属于一个环,有Q组询问,每次询问两点之间的最短路径. Input 输入的第一行包含三个整数,分别表示N和M和Q 下接M行,每行三个 ...

  7. BZOJ2125 最短路 圆方树、倍增

    传送门 对仙人掌建立圆方树,然后对边定权 对于圆点和圆点之间的边,是原来仙人掌上的桥,边权保持不变 对于圆点和方点之间的边,将圆方树看做以一个圆点为根的有根树之后,一个方点的父亲一定是一个圆点.对于这 ...

  8. BZOJ.2125.最短路(仙人掌 最短路Dijkstra)

    题目链接 多次询问求仙人掌上两点间的最短路径. 如果是在树上,那么求LCA就可以了. 先做着,看看能不能把它弄成树. 把仙人掌看作一个图(实际上就是),求一遍根节点到每个点的最短路dis[i]. 对于 ...

  9. 2018.07.25 bzoj2125: 最短路(圆方树+倍增)

    传送门 人生的第一道仙人掌. 这道题求是仙人掌上的最短路. 先建出圆方树,然后用倍增跑最短路,当lca" role="presentation" style=" ...

随机推荐

  1. 如何提高CSS性能?CSS优化、提高性能提升总汇

    如何提高CSS性能,根据页面的加载性能和CSS代码性能,主要表现为: 加载性能 (主要是从减少文件体积,减少阻塞加载,提高并发方面入手),选择器性能,渲染性能,可维护性.   1.尽量将样式写在单独的 ...

  2. ES6入门(一)

    目录 ES6入门 (一) let 和 const 命令 let 定义 注意事项 块级作用域 不存在变量提升 let的特点就是存在暂时性死区 特殊情况的暂时性死区 之 ES6函数存在默认值情况 不允许重 ...

  3. day76 作业

    目录 需求: 作业1: 作业2: 需求: 1. 在作业1.html代码的基础上,引入vue.js文件,并实例化vm对象,绑定#goods元素 2. 在作业1.html代码的基础上,默认中间弹出窗口隐藏 ...

  4. day39 进程

    目录 一.进程对象的其他方法 二.僵尸进程与孤儿进程(了解) 1 僵尸进程 2 孤儿进程 三.守护进程 四.互斥锁 五.进程间通信 六.IPC机制 七.生产者消费者模型 八.线程理论 一.进程对象的其 ...

  5. MYSQL 之 JDBC(十六): DBUtils

    DBUtils是Apache组织提供的一个开源的JDBC工具类库,能极大简化jdbc编码的工作量 API介绍 QueryRunner ResultSetHandler 工具类DbUtils 用DBUt ...

  6. redis(二十三):Redis 集群(proxy 型)二

    redis的确是一个非常高效的缓存服务器,但是单台redis服务器的内存管理能力有限,如果一味的加大内存的话会导致redis服务器的性能下降,所以就必须要搭建redis集群来提供服务.在redis官方 ...

  7. 数据可视化之powerBI基础(二)PowerBI动态图表技巧:钻取交互

    https://zhuanlan.zhihu.com/p/64406366 查看可视化图表的时候,我们可能想深入了解某个视觉对象的更详细信息,或者进行更细粒度的分析,比如看到2017年的总体数据,同时 ...

  8. 机器学习实战基础(三十五):随机森林 (二)之 RandomForestClassifier 之重要参数

    RandomForestClassifier class sklearn.ensemble.RandomForestClassifier (n_estimators=’10’, criterion=’g ...

  9. OSCP Learning Notes - Exploit(6)

    Antivirus Bypassing Tools: Kali Linux Detection Platform: https://www.virustotal.com/gui/home/upload ...

  10. redis pipelined 示例

    redis 常用的数据类型 有序集合(sort set).无序集合 (set),hashMap redis pipelined 示例 List<Object> list = jedisTe ...