海量数据处理之布隆过滤器BloomFilter算法
Bloom Filter是由Bloom在1970年提出的一种多哈希函数映射的快速查找算法。通常应用在一些需要快速判断某个元素是否属于集合,但是并不严格要求100%正确的场合。使用场景:数据量为100亿、空间受限制的黑名单网页系统、垃圾邮件过滤系统、爬虫的网址判重系统等。
实例
为了说明Bloom Filter存在的重要意义,举一个实例:
假设要你写一个网络蜘蛛(web crawler)。由于网络间的链接错综复杂,蜘蛛在网络间爬行很可能会形成“环”。
为了避免形成“环”,就需要知道蜘蛛已经访问过那些URL。给一个URL,怎样知道蜘蛛是否已经访问过呢?稍微想想,就会有如下几种方案:
1、将访问过的URL保存到数据库。
2、用HashSet将访问过的URL保存起来。那只需接近O(1)的代价就可以查到一个URL是否被访问过了。
3、URL经过MD5或SHA-1等单向哈希后再保存到HashSet或数据库。
4、Bit-Map方法。建立一个BitSet,将每个URL经过一个哈希函数映射到某一位。
方法1~3都是将访问过的URL完整保存,方法4则只标记URL的一个映射位。
以上方法在数据量较小的情况下都能完美解决问题,但是当数据量变得非常庞大时问题就来了。
方法1的缺点:数据量变得非常庞大后关系型数据库查询的效率会变得很低。而且每来一个URL就启动一次数据库查询是不是太小题大做了?
方法2的缺点:太消耗内存。随着URL的增多,占用的内存会越来越多。就算只有1亿个URL,每个URL只算50个字符,就需要5GB内存。
方法3:由于字符串经过MD5处理后的信息摘要长度只有128Bit,SHA-1处理后也只有160Bit,因此方法3比方法2节省了好几倍的内存。
方法4消耗内存是相对较少的,但缺点是单一哈希函数发生冲突的概率太高。还记得数据结构课上学过的Hash表冲突的各种解决方法么?若要降低冲突发生的概率到1%,就要将BitSet的长度设置为URL个数的100倍。
实质上上面的算法都忽略了一个重要的隐含条件:允许小概率的出错,不一定要100%准确!也就是说少量url实际上没有没网络蜘蛛访问,而将它们错判为已访问的代价是很小的——大不了少抓几个网页呗。
Bloom Filter的算法
废话说到这里,下面引入本篇的主角——Bloom Filter。其实上面方法4的思想已经很接近Bloom Filter了。
方法四的致命缺点是冲突概率高,为了降低冲突的概念,Bloom Filter使用了多个哈希函数,而不是一个。
Bloom Filter算法如下:
创建一个m位BitSet,先将所有位初始化为0,然后选择k个不同的哈希函数。第i个哈希函数对字符串str哈希的结果记为h(i,str),且h(i,str)的范围是0到m-1 。
(1) 加入字符串过程
下面是每个字符串处理的过程,首先是将字符串str“记录”到BitSet中的过程:
对于字符串str,分别计算h(1,str),h(2,str)…… h(k,str)。然后将BitSet的第h(1,str)、h(2,str)…… h(k,str)位设为1。
图1.Bloom Filter加入字符串过程
很简单吧?这样就将字符串str映射到BitSet中的k个二进制位了。
(2) 检查字符串是否存在的过程
下面是检查字符串str是否被BitSet记录过的过程:
对于字符串str,分别计算h(1,str),h(2,str)…… h(k,str)。然后检查BitSet的第h(1,str)、h(2,str)…… h(k,str)位是否为1,若其中任何一位不为1则可以判定str一定没有被记录过。若全部位都是1,则“认为”字符串str存在。
若一个字符串对应的Bit不全为1,则可以肯定该字符串一定没有被Bloom Filter记录过。(这是显然的,因为字符串被记录过,其对应的二进制位肯定全部被设为1了)。
但是若一个字符串对应的Bit全为1,实际上是不能100%的肯定该字符串被Bloom Filter记录过的。(因为有可能该字符串的所有位都刚好是被其他字符串所对应)这种将该字符串划分错的情况,称为false positive 。
(3) 删除字符串过程
字符串加入了就被不能删除了,因为删除会影响到其他字符串。实在需要删除字符串的可以使用Counting bloomfilter(CBF),这是一种基本Bloom Filter的变体,CBF将基本Bloom Filter每一个Bit改为一个计数器,这样就可以实现删除字符串的功能了。
Bloom Filter跟单哈希函数Bit-Map不同之处在于:Bloom Filter使用了k个哈希函数,每个字符串跟k个bit对应。从而降低了冲突的概率。
Bloom Filter参数选择
(1)哈希函数选择
哈希函数的选择对性能的影响应该是很大的,一个好的哈希函数要能近似等概率的将字符串映射到各个Bit。
选择k个不同的哈希函数比较麻烦,一种简单的方法是选择一个哈希函数,然后送入k个不同的参数。
(2)Bit数组大小选择
哈希函数个数k、位数组大小m、加入的字符串数量n的关系可以参考参考文献1。该文献证明了对于给定的m、n,当 k = ln(2)* m/n 时出错的概率是最小的。
同时该文献还给出特定的k,m,n的出错概率。例如:根据参考文献1,哈希函数个数k取10,位数组大小m设为字符串个数n的20倍时,false positive发生的概率是0.0000889 ,这个概率基本能满足网络爬虫的需求了。
Bloom Filter实现代码
下面给出一个简单的Bloom Filter的Java实现代码:
import java.util.BitSet;
publicclass BloomFilter
{
/* BitSet初始分配2^24个bit */
privatestaticfinalint DEFAULT_SIZE =1<<25;
/* 不同哈希函数的种子,一般应取质数 */
privatestaticfinalint[] seeds =newint[] { 5, 7, 11, 13, 31, 37, 61 };
private BitSet bits =new BitSet(DEFAULT_SIZE);
/* 哈希函数对象 */
private SimpleHash[] func =new SimpleHash[seeds.length];
public BloomFilter()
{
for (int i =0; i < seeds.length; i++)
{
func[i] =new SimpleHash(DEFAULT_SIZE, seeds[i]);
}
}
// 将字符串标记到bits中
publicvoid add(String value)
{
for (SimpleHash f : func)
{
bits.set(f.hash(value), true);
}
}
//判断字符串是否已经被bits标记
publicboolean contains(String value)
{
if (value ==null)
{
returnfalse;
}
boolean ret =true;
for (SimpleHash f : func)
{
ret = ret && bits.get(f.hash(value));
}
return ret;
}
/* 哈希函数类 */
publicstaticclass SimpleHash
{
privateint cap;
privateint seed;
public SimpleHash(int cap, int seed)
{
this.cap = cap;
this.seed = seed;
}
//hash函数,采用简单的加权和hash
publicint hash(String value)
{
int result =0;
int len = value.length();
for (int i =0; i < len; i++)
{
result = seed * result + value.charAt(i);
}
return (cap -1) & result;
}
}
}
参考文献
[1]Pei Cao. Bloom Filters - the math.
http://pages.cs.wisc.edu/~cao/papers/summary-cache/node8.html
[2]Wikipedia. Bloom filter.
http://en.wikipedia.org/wiki/Bloom_filter
海量数据处理之布隆过滤器BloomFilter算法的更多相关文章
- 白话布隆过滤器BloomFilter
通过本文将了解到以下内容: 查找问题的一般思路 布隆过滤器的基本原理 布隆过滤器的典型应用 布隆过滤器的工程实现 场景说明: 本文阐述的场景均为普通单机服务器.并非分布式大数据平台,因为在大数据平台下 ...
- 【浅析】|白话布隆过滤器BloomFilter
通过本文将了解到以下内容: 查找问题的一般思路 布隆过滤器的基本原理 布隆过滤器的典型应用 布隆过滤器的工程实现 场景说明: 本文阐述的场景均为普通单机服务器.并非分布式大数据平台,因为在大数据平台下 ...
- 布隆过滤器(BloomFilter)持久化
摘要 Bloomfilter运行在一台机器的内存上,不方便持久化(机器down掉就什么都没啦),也不方便分布式程序的统一去重.我们可以将数据进行持久化,这样就克服了down机的问题,常见的持久化方法包 ...
- HBase之八--(3):Hbase 布隆过滤器BloomFilter介绍
布隆过滤器( Bloom filters) 数据块索引提供了一个有效的方法,在访问一个特定的行时用来查找应该读取的HFile的数据块.但是它的效用是有限的.HFile数据块的默认大小是64KB,这个大 ...
- Spark布隆过滤器(bloomFilter)
数据过滤在很多场景都会应用到,特别是在大数据环境下.在数据量很大的场景实现过滤或者全局去重,需要存储的数据量和计算代价是非常庞大的.很多小伙伴第一念头肯定会想到布隆过滤器,有一定的精度损失,但是存储性 ...
- Hbase 布隆过滤器BloomFilter介绍
转载自:http://blog.csdn.net/opensure/article/details/46453681 1.主要功能 提高随机读的性能 2.存储开销 bloom filter的数据存在S ...
- 浅谈布隆过滤器Bloom Filter
先从一道面试题开始: 给A,B两个文件,各存放50亿条URL,每条URL占用64字节,内存限制是4G,让你找出A,B文件共同的URL. 这个问题的本质在于判断一个元素是否在一个集合中.哈希表以O(1) ...
- SpringBoot(18)---通过Lua脚本批量插入数据到Redis布隆过滤器
通过Lua脚本批量插入数据到布隆过滤器 有关布隆过滤器的原理之前写过一篇博客: 算法(3)---布隆过滤器原理 在实际开发过程中经常会做的一步操作,就是判断当前的key是否存在. 那这篇博客主要分为三 ...
- guava布隆过滤器
pom引入依赖 <dependency> <groupId>com.google.guava</groupId> <artifactId>guava&l ...
随机推荐
- py_创建文件以及写入读取数据+异常处理
import readline import math import json ''' A: 第一行 第二行 第三行 ''' #从文件读取数据 with open("D:\A.txt&quo ...
- Python和Nose实现移动应用的自动化测试
今天跟大家聊的是Python和Nose实现移动应用的自动化测试,希望对你们有帮助,有说的不好的地方,还请多多指教! 采用Appium进行自动化的功能性测试最酷的一点是,你可以使用具有最适合你的测试工具 ...
- Docker 网络模式详解及容器间网络通信
当项目大规模使用 Docker 时,容器通信的问题也就产生了.要解决容器通信问题,必须先了解很多关于网络的知识.Docker 作为目前最火的轻量级容器技术,有很多令人称道的功能,如 Docker 的镜 ...
- 如何解读 Java IO、NIO 中的同步阻塞与同步非阻塞?
原文链接:如何解读 Java IO.NIO 中的同步阻塞与同步非阻塞? 一.前言 最近刚读完一本书:<Netty.Zookeeper.Redis 并发实战>,个人觉得 Netty 部分是写 ...
- Fitness - 06.01
倒计时213天 久违的瑜伽课,却发现生疏了很多,倒地不起TAT 要加强锻炼,不要松懈啊~~~! 期待黄金周的到来!!
- POJ-2299-Ultra-QuickSort(单点更新 + 区间查询+离散化)
In this problem, you have to analyze a particular sorting algorithm. The algorithm processes a seque ...
- css动画实现吃豆豆
话不多说,直接上代码:(作为一个初学者写的代码,多么0基础都能看的懂吧.) HTML部分 <!DOCTYPE html> <html lang=en> <head> ...
- Activiti工作流概述
本来打算看OCR的但是我手里有的资源是讲的PY的,涉及到CNN和RNN看得有的不太明白,捂脸,所以看看工作流吧,反正也都不会,干啥啥不会 工作流的概念 工作流的概念应该都差不多了解要不也不会搜索这个标 ...
- JS数组去重的实现
其实数组去重的实现就分为两大类 利用语法自身键不可重复性 利用循环(递归)和数组方法使用不同的api来处理. 注意️:下列封装成方法的要在函数开始增加类型检测,为了让去重的实现代码更加简单易懂,封装时 ...
- 深入理解 JVM 的内存区域
深入理解运行时数据区 代码示例: 1. JVM 向操作系统申请内存: JVM 第一步就是通过配置参数或者默认配置参数向操作系统申请内存空间,根据内存大小找到具体的内存分配表,然后把内存段的起始地址和终 ...