LOJ#2882. 「JOISC 2014 Day4」两个人的星座(计算几何)
题面
题解
我们发现如果两个三角形相离,那么这两个三角形一定存在两条公切线
那么我们可以\(O(n^2)\)枚举其中一条公切线,然后可以暴力\(O(n^3)\)计算
怎么优化呢?我们可以枚举一个定点,然后把其它所有点按到这个定点的极角排序,那么就可以\(O(n^2)\)得出答案了
//minamoto
#include<bits/stdc++.h>
#define R register
#define ll long long
#define inline __inline__ __attribute__((always_inline))
#define fp(i,a,b) for(R int i=(a),I=(b)+1;i<I;++i)
#define fd(i,a,b) for(R int i=(a),I=(b)-1;i>I;--i)
#define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
using namespace std;
char buf[1<<21],*p1=buf,*p2=buf;
inline char getc(){return p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++;}
int read(){
R int res,f=1;R char ch;
while((ch=getc())>'9'||ch<'0')(ch=='-')&&(f=-1);
for(res=ch-'0';(ch=getc())>='0'&&ch<='9';res=res*10+ch-'0');
return res*f;
}
const int N=3005;const double Pi=acos(-1.0);
int c[2][5],bl[N],n;ll res;
struct node{
int x,y,c;double k;
inline node(){}
inline node(R int xx,R int yy):x(xx),y(yy){}
inline node operator -(const node &b)const{return node(x-b.x,y-b.y);}
inline double K(){return atan2(y,x);}
inline bool operator <(const node &b)const{return k<b.k;}
}st[N],p[N];
inline int calc(R int k,R int x){
switch(x){
case 0:return c[k][1]*c[k][2];break;
case 1:return c[k][0]*c[k][2];break;
case 2:return c[k][0]*c[k][1];break;
}
}
void solve(int id){
int top=0;
fp(i,1,id-1)p[++top]=st[i],p[top].k=(st[i]-st[id]).K();
fp(i,id+1,n)p[++top]=st[i],p[top].k=(st[i]-st[id]).K();
fp(i,1,top)if(p[i].k<=0)p[i].k+=Pi;
sort(p+1,p+1+top);
c[0][0]=c[0][1]=c[0][2]=c[1][0]=c[1][1]=c[1][2]=0;
fp(i,1,top)if(p[i].y<st[id].y||p[i].y==st[id].y&&p[i].x>st[id].x)
++c[0][p[i].c],bl[i]=0;
else ++c[1][p[i].c],bl[i]=1;
fp(i,1,top){
--c[bl[i]][p[i].c],res+=1ll*calc(0,st[id].c)*calc(1,p[i].c);
res+=1ll*calc(1,st[id].c)*calc(0,p[i].c),bl[i]^=1,++c[bl[i]][p[i].c];
}
}
int main(){
// freopen("testdata.in","r",stdin);
n=read();
fp(i,1,n)st[i].x=read(),st[i].y=read(),st[i].c=read();
fp(i,1,n)solve(i);
printf("%lld\n",res>>2);
return 0;
}
LOJ#2882. 「JOISC 2014 Day4」两个人的星座(计算几何)的更多相关文章
- 「JOISC 2014 Day4」两个人的星座
首先突破口肯定在三角形不交,考虑寻找一些性质. 引理一:两个三角形不交当且仅当存在一个三角形的一条边所在直线将两个三角形分为异侧 证明可以参考:三角形相离充要条件,大致思路是取两个三角形重心连线,将其 ...
- @loj - 3039@ 「JOISC 2019 Day4」蛋糕拼接 3
目录 @description@ @solution@ @accepted code@ @details@ @description@ 今天是 IOI 酱的生日,所以她的哥哥 JOI 君给她预定了一个 ...
- LOJ #2877. 「JOISC 2014 Day2」交朋友 并查集+BFS
这种图论问题都挺考验小思维的. 首先,我们把从 $x$ 连出去两条边的都合并了. 然后再去合并从 $x$ 连出去一条原有边与一条新边的情况. 第一种情况直接枚举就行,第二种情况来一个多源 bfs 即可 ...
- LOJ #2876. 「JOISC 2014 Day2」水壶 BFS+最小生成树+倍增LCA
非常好的一道图论问题. 显然,我们要求城市间的最小生成树,然后查询路径最大值. 然后我们有一个非常神的处理方法:进行多源 BFS,处理出每一个城市的管辖范围. 显然,如果两个城市的管辖范围没有交集的话 ...
- [LOJ#2878]. 「JOISC 2014 Day2」邮戳拉力赛[括号序列dp]
题意 题目链接 分析 如果走到了下行车站就一定会在前面的某个车站走回上行车站,可以看成是一对括号. 我们要求的就是 类似 代价最小的括号序列匹配问题,定义 f(i,j) 表示到 i 有 j 个左括号没 ...
- 【LOJ】#3034. 「JOISC 2019 Day2」两道料理
LOJ#3034. 「JOISC 2019 Day2」两道料理 找出最大的\(y_{i}\)使得\(sumA_{i} + sumB_{y_i} \leq S_{i}\) 和最大的\(x_{j}\)使得 ...
- 【LOJ】#3033. 「JOISC 2019 Day2」两个天线
LOJ#3033. 「JOISC 2019 Day2」两个天线 用后面的天线更新前面的天线,线段树上存历史版本的最大值 也就是线段树需要维护历史版本的最大值,后面的天线的标记中最大的那个和最小的那个, ...
- 「JOISC 2014 Day1」巴士走读
「JOISC 2014 Day1」巴士走读 将询问离线下来. 从终点出发到起点. 由于在每个点(除了终点)的时间被过来的边固定,因此如果一个点不被新的边更新,是不会发生变化的. 因此可以按照时间顺序, ...
- 「JOISC 2014 Day1」 历史研究
「JOISC 2014 Day1」 历史研究 Solution 子任务2 暴力,用\(cnt\)记录每种权值出现次数. 子任务3 这不是一个尺取吗... 然后用multiset维护当前的区间,动态加, ...
随机推荐
- 64 位 win7 使用PLSQL Developer(转)
由于 PLSQL Developer 没有64位版本,所以在64位系统上运行该程链接64位Oracle时就会报错,笔者为这个问题纠结了好几天,后来通过请教Google + 动手实践,终于搞定了这个问题 ...
- Associate File Type with Qt In Mac Os and Win
Win Registry Question One day, my boss want me to finish one function which let the users can double ...
- Orientation of phone Image
相机拍摄的图像方向问题 Description 很多时候,我们习惯把手机相机拍摄的图像在电脑上面查看.有的时候在手机上面看图像是正的,可是电脑端查看是反的:有的时候手机和电脑都是反的:有的时候都是正的 ...
- IO 之 InputStream 和 Reader
package java.io; // Representing an input stream of bytes. public abstract class InputStream impleme ...
- dojo和jquery混合使用
<script type="text/javascript" src="https://ajax.googleapis.com/ajax/libs/dojo/1.7 ...
- iOS隐藏导航条1px的底部横线
第二种方法:1)声明UIImageView变量,存储底部横线 @implementation MyViewController { UIImageView *navBarHairlineImageVi ...
- Spring MVC3.2 通过Servlet3.0实现文件上传
Servlet3.0规范增加了对文件上传的原生支持,这里记录一下Spring MVC3通过Servlet3上传文件的实现. 配置文件: applicationContext.xml <!-- s ...
- An Introduction to Text Mining using Twitter Streaming
Text mining is the application of natural language processing techniques and analytical methods to t ...
- [label][Chrome-Extension] How to start Chrome Extension's development
Firstly , you should read these two pages. https://developer.chrome.com/extensions/overview https:/ ...
- 使用VPD解决EBS中信息屏蔽问题
本文描述的是2005年在一个项目中采用Oracle VPD技术解决同一个OU下按照不同办事处屏蔽销售订单的解决方案. VPD技术提供了数据库对象(表,同义词,视图)行级别访问的控制.关于VPD更多的信 ...