CF816E-Karen and Supermarket
题目
Description
今天Karen要去买东西。
一共有 \(n\) 件物品,每件物品的价格为\(c_i\),同时每件物品都有一张优惠券,可以对这件物品减价 \(d_i\) . 使用第 \(i\) 件物品的优惠券的条件是买这件物品并且使用了第 \(x_i\) 张优惠券。现在给出Karen带的钱数 \(b\) ,问最多能买几件物品。
Input
第一行两个整数 \(n\le 5\times 10^3 , b\le 10^9\) 。
接下来 \(n\) 行中第 \(i\) 行,首先有两个整数 \(c_i,d_i\le 10^9\) 。对于 \(i>1\) 有第三个整数 \(1\le x_i<i\) 。
Output
一行,输出最多能买的物品个数。
Sample Input
样例1:
6 16
10 9
10 5 1
12 2 1
20 18 3
10 2 3
2 1 5
样例2:
5 10
3 1
3 1 1
3 1 2
3 1 3
3 1 4
Sample Output
样例1:
4
样例2:
5
Hint
样例1: 买1,3,4号物品,用优惠券;买6号物品,不用优惠券
样例2:买所有的的物品,用优惠券
分析
由于每个物品只有一件,我们可以把问题转化成求买 \(k\) 个物品至少需要多少钱,最后再统计最多可以买多少个。
由于有 \(1\le x_i<i\) ,所以优惠券的使用条件构成了一棵树。现在问题是如何在这颗树上求解。
注意到如果一个点不用优惠券,那么子树中所有点都不能用,所以设状态:
\(f[x][i][0,1]\) 表示以 \(x\) 为根的子树中买 \(i\) 件物品,是否可以用优惠券(0不能,1能),那么可以通过子树的信息来更新当前点:
f[x][i+j][1]=\min \{f[u][i][1]+f[v][j][1],f[u][i][0]+f[v][j][1],u,v\in \text{subtree}(x)\} \\
\]
即如果当前点不可用优惠券,那么子树都不能用。如果当前点用优惠券,那么子树可用可不用。
这样\(f[\text{root}][k][1]\)就是我们要求的东西。
这样做似乎是\(O(n^3)\)的呢!我们实际上是枚举子树中的点对,所以可以不断地把点合并进当前点中,就可以做到\(n^2\)级别了。
循环的时候要从后往前,否则无法保证每件物品只买一次。
代码
#include<cstdio>
#include<cctype>
#include<vector>
#include<algorithm>
using namespace std;
typedef long long giant;
int read() {
int x=0,f=1;
char c=getchar();
for (;!isdigit(c);c=getchar()) if (c=='-') f=-1;
for (;isdigit(c);c=getchar()) x=x*10+c-'0';
return x*f;
}
const int maxn=5e3+10;
const giant inf=1e13;
int n,bud;
giant f[maxn][maxn][2];
vector<int> g[maxn];
void add(int x,int y) {g[x].push_back(y);}
void Min(giant &x,giant y) {x=min(x,y);}
int dfs(int x) {
int sz=1;
for (int v:g[x]) {
int vs=dfs(v);
for (int j=sz;j>=0;--j) {
for (int i=vs;i>=0;--i) {
Min(f[x][i+j][0],f[x][j][0]+f[v][i][0]);
Min(f[x][i+j][1],f[x][j][1]+f[v][i][1]);
}
}
sz+=vs;
}
for (int i=0;i<=n;++i) Min(f[x][i][1],f[x][i][0]);
return sz;
}
int main() {
#ifndef ONLINE_JUDGE
freopen("test.in","r",stdin);
#endif
n=read(),bud=read();
for (int i=1;i<=n;++i) for (int j=0;j<=n;++j) for (int k=0;k<2;++k) f[i][j][k]=inf;
for (int i=1;i<=n;++i) {
f[i][0][0]=0,f[i][1][0]=read(),f[i][1][1]=f[i][1][0]-read();
if (i>1) add(read(),i);
}
dfs(1);
int ans=0;
for (int i=1;i<=n;++i) if (f[1][i][1]<=bud) ans=i;
printf("%d\n",ans);
return 0;
}
CF816E-Karen and Supermarket的更多相关文章
- [CF816E] Karen and Supermarket1 [树形dp]
传送门 - > \(CF816E\) Karen and Supermarket 题意翻译 在回家的路上,凯伦决定到超市停下来买一些杂货. 她需要买很多东西,但因为她是学生,所以她的预算仍然很有 ...
- Codeforces 815C Karen and Supermarket 树形dp
Karen and Supermarket 感觉就是很普通的树形dp. dp[ i ][ 0 ][ u ]表示在 i 这棵子树中选择 u 个且 i 不用优惠券的最小花费. dp[ i ][ 1 ][ ...
- CF815C Karen and Supermarket
题目链接 CF815C Karen and Supermarket 题解 只要在最大化数量的前提下,最小化花费就好了 这个数量枚举ok, dp[i][j][1/0]表示节点i的子树中买了j件商品 i ...
- CF815C Karen and Supermarket [树形DP]
题目传送门 Karen and Supermarket On the way home, Karen decided to stop by the supermarket to buy some gr ...
- E. Karen and Supermarket
E. Karen and Supermarket time limit per test 2 seconds memory limit per test 512 megabytes input sta ...
- Codeforces Round #419 (Div. 1) C. Karen and Supermarket 树形DP
C. Karen and Supermarket On the way home, Karen decided to stop by the supermarket to buy some g ...
- codeforces 815C Karen and Supermarket
On the way home, Karen decided to stop by the supermarket to buy some groceries. She needs to buy a ...
- codeforces round #419 E. Karen and Supermarket
On the way home, Karen decided to stop by the supermarket to buy some groceries. She needs to buy a ...
- Codeforces 815 C Karen and Supermarket
On the way home, Karen decided to stop by the supermarket to buy some groceries. She needs to buy a ...
- 【Codeforces 815C】Karen and Supermarket
Codeforces 815 C 考虑树型dp. \(dp[i][0/1][k]\)表示现在在第i个节点, 父亲节点有没有选用优惠, 这个子树中买k个节点所需要花的最小代价. 然后转移的时候枚举i的一 ...
随机推荐
- vim 查找
一.用/和?的区别:/后跟查找的字符串.vim会显示文本中第一个出现的字符串.?后跟查找的字符串.vim会显示文本中最后一个出现的字符串.二.注意事项:不管用/还是?查找到第一个字符串后,按回车,vi ...
- [arc062E]Building Cubes with AtCoDeer
Description 传送门 Solution 这道题直接暴力就好..毕竟只要枚举了前后两个瓷砖的方向和编号,其他瓷砖的颜色就是确定的了. 然而场上我的去重除了问题qaq. 我们钦定在立方体最前面的 ...
- day1 HTML - <head>
1.html是什么? 超文本标记语言(Hypertext Markup Language,HTML) <!DOCTYPE html> <html lang="en" ...
- (ex)Lucas总结
(ex)Lucas总结 普通Lucas 求 \[ C_n^m\;mod\;p \] 其中\(n,m,p\leq 10^5\)其中\(p\)为质数 公式不难背,那就直接背吧... \[ C_n^m\;m ...
- Sqlite数据多表联合update
其实在Mysql中,多表联合update不是什么难事. 语法: 1 UPDATE table_references SET col_name1=expr1 [, col_name2=expr2 ... ...
- 集群服务器、负载均衡和session共享,C#的static变量
集群服务器:是指由两台以上服务器共同组成的服务器,目的是为了提高性能. 负载均衡:是基于集群服务器实现的,作用是当A服务器访问数达到一定上限时,接下来客户端的请求会自动分配给B服务器,目的是减少服务器 ...
- Linux文件归档和解压缩
1.tar tar命令相当于归档,不做压缩,解压同样也是把归档文件释放出来(归档通俗上可以理解为把文件分类,把一些文件放到一个包中归类,方便用户管理) 解包:tar -zxvf file.tar #解 ...
- 001----Mysql隔离级别
一:事务隔离级别 mysql数据库的隔离界别如下: 1, READ UNCOMMITTED(未提交读) 事务中的修改,即使没有提交,对其它事务也是可见的. 这样会造成脏读(Dirty Read)的问 ...
- SQL中NULL的妙用
商品表Products 库房表WarehouseDistrict 库存表WarehouseStock 一般写法 ;WITH stock AS ( SELECT DistrictId, ProductI ...
- log4j 配置使用
使用log4j来管理日志信息,非常方便,下面简单介绍一下整个使用流程: 1.创建简单java项目 2.在类路径下新建log4j.properties文件 3.配置log4j.properties文件 ...