题目

Description

今天Karen要去买东西。

一共有 \(n\) 件物品,每件物品的价格为\(c_i\),同时每件物品都有一张优惠券,可以对这件物品减价 \(d_i\) . 使用第 \(i\) 件物品的优惠券的条件是买这件物品并且使用了第 \(x_i\) 张优惠券。现在给出Karen带的钱数 \(b\) ,问最多能买几件物品。

Input

第一行两个整数 \(n\le 5\times 10^3 , b\le 10^9\) 。

接下来 \(n\) 行中第 \(i\) 行,首先有两个整数 \(c_i,d_i\le 10^9\) 。对于 \(i>1\) 有第三个整数 \(1\le x_i<i\) 。

Output

一行,输出最多能买的物品个数。

Sample Input

样例1:

6 16

10 9

10 5 1

12 2 1

20 18 3

10 2 3

2 1 5

样例2:

5 10

3 1

3 1 1

3 1 2

3 1 3

3 1 4

Sample Output

样例1:

4

样例2:

5

Hint

样例1: 买1,3,4号物品,用优惠券;买6号物品,不用优惠券

样例2:买所有的的物品,用优惠券

分析

由于每个物品只有一件,我们可以把问题转化成求买 \(k\) 个物品至少需要多少钱,最后再统计最多可以买多少个。

由于有 \(1\le x_i<i\) ,所以优惠券的使用条件构成了一棵树。现在问题是如何在这颗树上求解。

注意到如果一个点不用优惠券,那么子树中所有点都不能用,所以设状态:

\(f[x][i][0,1]\) 表示以 \(x\) 为根的子树中买 \(i\) 件物品,是否可以用优惠券(0不能,1能),那么可以通过子树的信息来更新当前点:

\[f[x][i+j][0]=\min \{f[u][i][0]+f[v][j][0],u,v\in \text{subtree}(x)\} \\
f[x][i+j][1]=\min \{f[u][i][1]+f[v][j][1],f[u][i][0]+f[v][j][1],u,v\in \text{subtree}(x)\} \\
\]

即如果当前点不可用优惠券,那么子树都不能用。如果当前点用优惠券,那么子树可用可不用。

这样\(f[\text{root}][k][1]\)就是我们要求的东西。

这样做似乎是\(O(n^3)\)的呢!我们实际上是枚举子树中的点对,所以可以不断地把点合并进当前点中,就可以做到\(n^2\)级别了。

循环的时候要从后往前,否则无法保证每件物品只买一次。

代码

#include<cstdio>
#include<cctype>
#include<vector>
#include<algorithm>
using namespace std;
typedef long long giant;
int read() {
int x=0,f=1;
char c=getchar();
for (;!isdigit(c);c=getchar()) if (c=='-') f=-1;
for (;isdigit(c);c=getchar()) x=x*10+c-'0';
return x*f;
}
const int maxn=5e3+10;
const giant inf=1e13;
int n,bud;
giant f[maxn][maxn][2];
vector<int> g[maxn];
void add(int x,int y) {g[x].push_back(y);}
void Min(giant &x,giant y) {x=min(x,y);}
int dfs(int x) {
int sz=1;
for (int v:g[x]) {
int vs=dfs(v);
for (int j=sz;j>=0;--j) {
for (int i=vs;i>=0;--i) {
Min(f[x][i+j][0],f[x][j][0]+f[v][i][0]);
Min(f[x][i+j][1],f[x][j][1]+f[v][i][1]);
}
}
sz+=vs;
}
for (int i=0;i<=n;++i) Min(f[x][i][1],f[x][i][0]);
return sz;
}
int main() {
#ifndef ONLINE_JUDGE
freopen("test.in","r",stdin);
#endif
n=read(),bud=read();
for (int i=1;i<=n;++i) for (int j=0;j<=n;++j) for (int k=0;k<2;++k) f[i][j][k]=inf;
for (int i=1;i<=n;++i) {
f[i][0][0]=0,f[i][1][0]=read(),f[i][1][1]=f[i][1][0]-read();
if (i>1) add(read(),i);
}
dfs(1);
int ans=0;
for (int i=1;i<=n;++i) if (f[1][i][1]<=bud) ans=i;
printf("%d\n",ans);
return 0;
}

CF816E-Karen and Supermarket的更多相关文章

  1. [CF816E] Karen and Supermarket1 [树形dp]

    传送门 - > \(CF816E\) Karen and Supermarket 题意翻译 在回家的路上,凯伦决定到超市停下来买一些杂货. 她需要买很多东西,但因为她是学生,所以她的预算仍然很有 ...

  2. Codeforces 815C Karen and Supermarket 树形dp

    Karen and Supermarket 感觉就是很普通的树形dp. dp[ i ][ 0 ][ u ]表示在 i 这棵子树中选择 u 个且 i 不用优惠券的最小花费. dp[ i ][ 1 ][ ...

  3. CF815C Karen and Supermarket

    题目链接 CF815C Karen and Supermarket 题解 只要在最大化数量的前提下,最小化花费就好了 这个数量枚举ok, dp[i][j][1/0]表示节点i的子树中买了j件商品 i ...

  4. CF815C Karen and Supermarket [树形DP]

    题目传送门 Karen and Supermarket On the way home, Karen decided to stop by the supermarket to buy some gr ...

  5. E. Karen and Supermarket

    E. Karen and Supermarket time limit per test 2 seconds memory limit per test 512 megabytes input sta ...

  6. Codeforces Round #419 (Div. 1) C. Karen and Supermarket 树形DP

    C. Karen and Supermarket     On the way home, Karen decided to stop by the supermarket to buy some g ...

  7. codeforces 815C Karen and Supermarket

    On the way home, Karen decided to stop by the supermarket to buy some groceries. She needs to buy a ...

  8. codeforces round #419 E. Karen and Supermarket

    On the way home, Karen decided to stop by the supermarket to buy some groceries. She needs to buy a ...

  9. Codeforces 815 C Karen and Supermarket

    On the way home, Karen decided to stop by the supermarket to buy some groceries. She needs to buy a ...

  10. 【Codeforces 815C】Karen and Supermarket

    Codeforces 815 C 考虑树型dp. \(dp[i][0/1][k]\)表示现在在第i个节点, 父亲节点有没有选用优惠, 这个子树中买k个节点所需要花的最小代价. 然后转移的时候枚举i的一 ...

随机推荐

  1. vim 查找

    一.用/和?的区别:/后跟查找的字符串.vim会显示文本中第一个出现的字符串.?后跟查找的字符串.vim会显示文本中最后一个出现的字符串.二.注意事项:不管用/还是?查找到第一个字符串后,按回车,vi ...

  2. [arc062E]Building Cubes with AtCoDeer

    Description 传送门 Solution 这道题直接暴力就好..毕竟只要枚举了前后两个瓷砖的方向和编号,其他瓷砖的颜色就是确定的了. 然而场上我的去重除了问题qaq. 我们钦定在立方体最前面的 ...

  3. day1 HTML - <head>

    1.html是什么? 超文本标记语言(Hypertext Markup Language,HTML) <!DOCTYPE html> <html lang="en" ...

  4. (ex)Lucas总结

    (ex)Lucas总结 普通Lucas 求 \[ C_n^m\;mod\;p \] 其中\(n,m,p\leq 10^5\)其中\(p\)为质数 公式不难背,那就直接背吧... \[ C_n^m\;m ...

  5. Sqlite数据多表联合update

    其实在Mysql中,多表联合update不是什么难事. 语法: 1 UPDATE table_references SET col_name1=expr1 [, col_name2=expr2 ... ...

  6. 集群服务器、负载均衡和session共享,C#的static变量

    集群服务器:是指由两台以上服务器共同组成的服务器,目的是为了提高性能. 负载均衡:是基于集群服务器实现的,作用是当A服务器访问数达到一定上限时,接下来客户端的请求会自动分配给B服务器,目的是减少服务器 ...

  7. Linux文件归档和解压缩

    1.tar tar命令相当于归档,不做压缩,解压同样也是把归档文件释放出来(归档通俗上可以理解为把文件分类,把一些文件放到一个包中归类,方便用户管理) 解包:tar -zxvf file.tar #解 ...

  8. 001----Mysql隔离级别

    一:事务隔离级别 mysql数据库的隔离界别如下: 1, READ UNCOMMITTED(未提交读) 事务中的修改,即使没有提交,对其它事务也是可见的.  这样会造成脏读(Dirty Read)的问 ...

  9. SQL中NULL的妙用

    商品表Products 库房表WarehouseDistrict 库存表WarehouseStock 一般写法 ;WITH stock AS ( SELECT DistrictId, ProductI ...

  10. log4j 配置使用

    使用log4j来管理日志信息,非常方便,下面简单介绍一下整个使用流程: 1.创建简单java项目 2.在类路径下新建log4j.properties文件 3.配置log4j.properties文件 ...