UVA12546_LCM Pair Sum
题目的意思是求 [西伽马(p+q)]其中lcm(p,q)=n。
又见数论呀。
其实这个题目很简单,考虑清楚了可以很简单的方法飘过。
我一开始是这样来考虑的。
对于每一个单独的质因子,如果为p,它的次数为x,那么在p和q中一定有一个为p^x,另一个为p^y(0<=y<=x),只有这样才能保证lcm为p^x。
这样我们可以枚举第一个为p^x,第二个数就是等比数列求和了。
同时我们再枚举第二个为p^x,这样我们就又是等比数列求和了。。。。
这样我们每次分别计算每一个质因子,同时每一个质因子其实是相对独立的,所以我们最后只要做一次乘法就可以了。不过注意每一个质因子出现的次数哦。
嗯到了这里我们就可以知道了,不过对于每一个答案还是统计了两遍,所以要把多出来的减出来。
嗯,大概就是这样的。
但是A掉后,我好像又秒懂了更更简单的办法。诶,深坑啊。自己考虑考虑就知道啦。。。
这个是经过预处理之后才勉强A掉的,内牛满面啊。。。。。——————————
#include <iostream>
#include <cstring>
#include <cstdio>
#define ll long long
#define M 1000000007
using namespace std; ll t,c,p[],a[],cas=;
ll ans;
ll f1[],f2[],f3[]; ll power(ll x,ll y)
{
ll tot=;
while (y)
{
if (y&) tot=(tot*x)%M;
y>>=;
x=(x*x)%M;
}
return tot;
} ll mod(ll x)
{
if (x<M) return x;
x-=M;
if (x<M) return x;
return x-M;
} ll count(ll x)
{
ll A=,B=,F,G;
for (ll i=; i<=c; i++)
{
if (x&(<<(i-)))
{
F=(f1[i]*(a[i]+))%M;
G=((f2[i]-)*(f3[i]))%M;
}
else
{
F=((f1[i]-)*(f3[i]))%M;
G=(f1[i]*(a[i]))%M;
}
A=(A*F)%M;
B=(B*G)%M; //cout<<" a: & b: "<<A<<' '<<B<<endl;
}
return mod(A+B);
} ll over=power(,M-); int main()
{
scanf("%lld",&t);
while (t--)
{
ans=;
scanf("%lld",&c);
for (ll i=; i<=c; i++) scanf("%lld%lld",&p[i],&a[i]);
for (ll i=; i<=c; i++)
{
f1[i]=power(p[i],a[i]);
f2[i]=power(p[i],a[i]+);
f3[i]=power(p[i]-,M-);
}
//ans=count(1<<(c)-1); cout<<"ans : "<<ans<<endl;
for (ll i=; i<(<<c); i++) ans=mod(ans+count(i));
ll tep=;
for (ll i=; i<=c; i++) tep=(tep*f1[i])%M;
ans=mod(ans+*tep);
ans=(ans*over)%M;
if (ans<) ans+=M;
printf("Case %lld: %lld\n",++cas,ans);
}
return ;
}
UVA12546_LCM Pair Sum的更多相关文章
- uva12546. LCM Pair Sum
uva12546. LCM Pair Sum One of your friends desperately needs your help. He is working with a secret ...
- bzoj3114 LCM Pair Sum
题意:以质因数分解的方式给定n,求所有满足:lcm(a, b) = n的无序数对的价值和.其中(a, b)的价值为a + b 解: 定义首项为a,公比为q,项数为n的等比数列的和为getQ(a, q, ...
- light oj 1236 - Pairs Forming LCM & uva 12546 - LCM Pair Sum
第一题给定一个大数,分解质因数,每个质因子的个数为e1,e2,e3,……em, 则结果为((1+2*e1)*(1+2*e2)……(1+2*em)+1)/2. 代码如下: #include <st ...
- Subarray Sum Closest
Question Given an integer array, find a subarray with sum closest to zero. Return the indexes of the ...
- LeetCode 1099. Two Sum Less Than K
原题链接在这里:https://leetcode.com/problems/two-sum-less-than-k/ 题目: Given an array A of integers and inte ...
- [LC] 1099. Two Sum Less Than K
Given an array A of integers and integer K, return the maximum S such that there exists i < j wit ...
- 【LeetCode】1099. Two Sum Less Than K 解题报告(C++)
作者: 负雪明烛 id: fuxuemingzhu 个人博客:http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 暴力求解 日期 题目地址:https://leetco ...
- Java中的泛型 (上) - 基本概念和原理
本节我们主要来介绍泛型的基本概念和原理 后续章节我们会介绍各种容器类,容器类可以说是日常程序开发中天天用到的,没有容器类,难以想象能开发什么真正有用的程序.而容器类是基于泛型的,不理解泛型,我们就难以 ...
- 三维网格精简算法(Quadric Error Metrics)附源码
在计算机图形应用中,为了尽可能真实呈现虚拟物体,往往需要高精度的三维模型.然而,模型的复杂性直接关系到它的计算成本,因此高精度的模型在几何运算时并不是必须的,取而代之的是一个相对简化的三维模型,那么如 ...
随机推荐
- 20155223 2006-2007-2 《Java程序设计》第一周学习总结
20155223 2006-2007-2 <Java程序设计>第一周学习总结 学习内容 提问 第三章:Java没有能够计算开根号的运算符,我遇到开根运算该怎么办? 第四章:Java有没有比 ...
- 20155239《Java程序设计》实验二(面向对象程序设计)实验报告
实验内容 初步掌握单元测试和TDD 2.理解并掌握面向对象三要素:封装.继承.多态 3.初步掌握UML建模 4.熟悉S.O.L.I.D原则 5.了解设计模式 实验步骤 单元测试 1.三种代码: 伪代码 ...
- 客户端与服务器端同步Evernote
原文地址:http://www.zhihu.com/question/20238731 Evernote的同步方式是 以本地为基准同步到网络 还是 以网络为基准同步到本地 的? 若客户端从未与服务器端 ...
- sql心经
问题: 查数据是一件很痛苦的事,尤其是多张表链接查询更是惨不忍睹 各种条件拼接,各种查询数据不对,看着写了半天的sql,感觉很完美,没毛病啊... 分析: http://blog.jobbole.co ...
- sql语句-5-联接组合查询
- 优步uber司机常见问题与答案(成都地区官方)
成都地区优步司机常见问题,官方内容,有点多,常出现的问题都收录在这里了,大家可以看看.(注:文章转自官方,非原创) 以下为成都优步合作车主最常见的问题列表和答案.对于绝大多数的车主端问题,您都可以在下 ...
- 【LG5021】[NOIP2018]赛道修建
[LG5021][NOIP2018]赛道修建 题面 洛谷 题解 NOIP之前做过增强版还没做出来\(QAQ\) 一看到题目中的最大值最小,就很容易想到二分答案 重点是考虑如何\(check\) 设\( ...
- linux 命令缩写
su super user apt advanced packaging tool ifconfig interface configuration so shared object fsp frac ...
- Linux中如何安装Apache服务器
Linux中如何安装Apache服务器 由于学习的需要,所有手动安装了一下Apache源码包,安装过程中的问题千奇百怪,但是如果弄清楚了问题出在哪里,那么也不是太难.如果有学习者出现安装中的问题,可仔 ...
- 测试Websocket建立通信,使用protobuf格式交换数据
接到一个应用测试,应用实现主要使用websocket保持长链接,使用protobuf格式交换数据,用途为发送消息,需要我们测试评估性能,初步评估需要测试长链接数.峰值消息数以及长期运行稳定性 整体需求 ...