bzoj2006: [NOI2010]超级钢琴(堆+RMQ)
和上一道题同类型...都是用堆求第k大
考虑对于每一个r,怎么求出一个最优的l。显然只需要求出前缀和,用RMQ查询前面最小的l的前缀和就好了。但是对于一个r,每个l只能选一次,选了一次之后,考虑怎么把l删掉。假设一个r,能选的l的区间在[A,B],那么选了l之后,这个区间就变成了[A,l-1]∪[l+1,B],所以我们可以构造一个四元组(sum, l, r, x)表示对于一个右端点x,能选择的左端点在[l,r],且最大的值为sum。用堆找出sum最大的二元组之后,求出这个sum的左端点y,然后把这个四元组拆成两个,能选择区间分别为[l,y-1]和[y+1,r],然后求出sum再加进堆里,取k次即得答案。
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<queue>
#include<cmath>
#define ll long long
using namespace std;
const int maxn=;
struct poi{int sum, l, r, x;};
priority_queue<poi>q;
int n, k, l, r;
int sum[maxn], f[maxn][];
ll ans;
void read(int &k)
{
int f=; k=; char c=getchar();
while(c<'' || c>'') c=='-' && (f=-), c=getchar();
while(c<='' && c>='') k=k*+c-'', c=getchar();
k*=f;
}
inline int min(int a, int b){return sum[a]<sum[b]?a:b;}
inline int querymin(int l, int r)
{
bool flag=; if(!l) l++, flag=;
if(l>r) return ;
int k=log2(r-l+), ans=min(f[l][k], f[r-(<<k)+][k]);
return flag?min(, ans):ans;
}
bool operator<(poi a, poi b) {return a.sum<b.sum;}
int main()
{
read(n); read(k); read(l); read(r);
for(int i=;i<=n;i++) read(sum[i]), sum[i]+=sum[i-], f[i][]=i;
for(int j=;j<=log2(n);j++)
for(int i=;i<=n-(<<j)+;i++)
f[i][j]=min(f[i][j-], f[i+(<<(j-))][j-]);
for(int i=l;i<=n;i++) q.push((poi){sum[f[i][]]-sum[querymin(max(, i-r), i-l)], max(, i-r), i-l, i});
for(int i=;i<=k;i++)
{
poi t=q.top(); q.pop();
ans+=t.sum; int x=querymin(t.l, t.r);
if(x!=t.l) q.push((poi){sum[f[t.x][]]-sum[querymin(t.l, x-)], t.l, x-, t.x});
if(x!=t.r) q.push((poi){sum[f[t.x][]]-sum[querymin(x+, t.r)], x+, t.r, t.x});
}
printf("%lld\n", ans);
return ;
}
为什么要求sum?这个不是可以O(1)算的吗?
一开始我写的就是用子程序算sum,把四元组变成三元组,要求sum的时候再临时调用子程序计算,导致的结果就是TLE!
虽然写了RMQ查询是O(1)的,但是多次调用子程序严重拖慢程序速度!宁愿多一维先计算出sum,这样调用子程序的次数会少很多,常数也就会小很多...


上方是先计算了sum的,下方是临时调用子程序计算sum的,可以发现常数大了一倍还多...而且我已经不是第一次因为多次调用子程序被卡常了T T
bzoj2006: [NOI2010]超级钢琴(堆+RMQ)的更多相关文章
- BZOJ2006[NOI2010]超级钢琴——堆+主席树
题目描述 小Z是一个小有名气的钢琴家,最近C博士送给了小Z一架超级钢琴,小Z希望能够用这架钢琴创作出世界上最美妙的 音乐. 这架超级钢琴可以弹奏出n个音符,编号为1至n.第i个音符的美妙度为Ai,其中 ...
- bzoj2006 [NOI2010]超级钢琴 (及其拓展)
bzoj2006 [NOI2010]超级钢琴 给定一个序列,求长度在 \([L,\ R]\) 之间的区间和的前 \(k\) 大之和 \(n\leq5\times10^5,\ k\leq2\times1 ...
- BZOJ2006 [NOI2010]超级钢琴 【堆 + RMQ】
2006: [NOI2010]超级钢琴 Time Limit: 20 Sec Memory Limit: 552 MB Submit: 3446 Solved: 1692 [Submit][Sta ...
- P2048 [NOI2010]超级钢琴(RMQ+堆+贪心)
P2048 [NOI2010]超级钢琴 区间和--->前缀和做差 多次查询区间和最大--->前缀和RMQ 每次取出最大的区间和--->堆 于是我们设个3元组$(o,l,r)$,表示左 ...
- [BZOJ2006][NOI2010]超级钢琴(ST表+堆)
2006: [NOI2010]超级钢琴 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 3679 Solved: 1828[Submit][Statu ...
- bzoj千题计划162:bzoj2006: [NOI2010]超级钢琴
http://www.lydsy.com/JudgeOnline/problem.php?id=2006 输出最大的k个 sum[r]-sum[l-1] (L<=r-l+1<=R) 之和 ...
- 【BZOJ 2006】2006: [NOI2010]超级钢琴(RMQ+优先队列)
2006: [NOI2010]超级钢琴 Time Limit: 20 Sec Memory Limit: 552 MBSubmit: 2792 Solved: 1388 Description 小 ...
- Bzoj 2006: [NOI2010]超级钢琴 堆,ST表
2006: [NOI2010]超级钢琴 Time Limit: 20 Sec Memory Limit: 552 MBSubmit: 2222 Solved: 1082[Submit][Statu ...
- [BZOJ2006] [NOI2010]超级钢琴 主席树+贪心+优先队列
2006: [NOI2010]超级钢琴 Time Limit: 20 Sec Memory Limit: 552 MBSubmit: 3591 Solved: 1780[Submit][Statu ...
- [NOI2010]超级钢琴(RMQ+堆)
小Z是一个小有名气的钢琴家,最近C博士送给了小Z一架超级钢琴,小Z希望能够用这架钢琴创作出世界上最美妙的音乐. 这架超级钢琴可以弹奏出n个音符,编号为1至n.第i个音符的美妙度为Ai,其中Ai可正可负 ...
随机推荐
- 利用 Intel Realsense做SLAM开发(一)
最近手里拿到一台Realsense D435,就是这个: https://click.intel.com/intelr-realsensetm-depth-camera-d435.html 所以准备拿 ...
- 添加jQuery方法解析url查询部分
Web前端不同页面间传值可以使用 cookies.localStorage 和 sessionStorage 等本地存储. 但是,今天我们尝试使用 url 查询,假设我们要传递字符串 str 到 mo ...
- MYSQL主从复制配置(整理)
MYSQL主从原理及过程 原理 Mysql的 Replication 是一个异步的复制过程(mysql5.1.7以上版本分为异步复制和半同步两种模式),从一个 Mysql instace(我们称之为 ...
- 亚马逊CEO贝索斯致股东信:阐述公司未来计划
亚马逊CEO 杰夫·贝索斯(Jeff Bezos)今天发布年度股东信, 详细描述了亚马逊的产品.服务和未来计划,当然,信中并没有任何的硬数据,比如说亚马逊Kindle的销量等等.但这封信也包括一些颇令 ...
- python3【基础】-装饰器
要理解充分理解python的装饰器,有充分理解下述三个知识点为前提: python作用域规则 函数即对象 闭包 一.python作用域规则: 首先介绍python中的作用域规则.python的作用域规 ...
- python中的os.walk
原文出处:https://www.jianshu.com/p/bbad16822eab python中os.walk是一个简单易用的文件.目录遍历器,可以帮助我们高效的处理文件.目录方面的事情. 1. ...
- lambda(匿名函数)---基于python
在学习python的过程中,lambda的语法时常会使人感到困惑,lambda是什么,为什么要使用lambda,是不是必须使用lambda? 下面就上面的问题进行一下解答. 1.lambda是什么? ...
- 如何理解IPD+CMMI+Scrum一体化研发管理解决方案之Scrum篇
如何快速响应市场的变化,如何推出更有竞争力的产品,如何在竞争中脱颖而出,是国内研发企业普遍面临的核心问题,为了解决这些问题,越来越多的企业开始重视创新与研发管理,加强研发过程的规范化,集成产品开发(I ...
- Python:Python的运行过程
1.Python是什么 和Java以及c#一样,Python也是一门基于虚拟机的语言.熟悉Java开发的人在命令行执行一个Java程序的过程通常如下: javac hello.java java he ...
- Python学习 - 入门篇2(更新中)
前言 学习渠道:慕课网:Python进阶 记录原因:我只是想边上课边做笔记而已,呵呵哒 食用提示:教程环境基于Python 2.x,有些内容在Python 3.x中已经改变 函数式编程 定义:一种抽象 ...