NOIP2017 逛公园 题解报告 【最短路 + 拓扑序 + dp】
题目描述
策策同学特别喜欢逛公园。公园可以看成一张NNN个点MMM条边构成的有向图,且没有
自环和重边。其中1号点是公园的入口,NNN号点是公园的出口,每条边有一个非负权值,
代表策策经过这条边所要花的时间。
策策每天都会去逛公园,他总是从1号点进去,从NNN号点出来。
策策喜欢新鲜的事物,它不希望有两天逛公园的路线完全一样,同时策策还是一个 特别热爱学习的好孩子,它不希望每天在逛公园这件事上花费太多的时间。如果1号点 到NNN号点的最短路长为ddd,那么策策只会喜欢长度不超过d+Kd
+ Kd+K的路线。
策策同学想知道总共有多少条满足条件的路线,你能帮帮它吗?
为避免输出过大,答案对PPP取模。
如果有无穷多条合法的路线,请输出−1。
输入输出格式
输入格式:
第一行包含一个整数 TTT,
代表数据组数。
接下来TTT组数据,对于每组数据:
第一行包含四个整数 N,M,K,PN,M,K,PN,M,K,P,每两个整数之间用一个空格隔开。
接下来MMM行,每行三个整数ai,bi,cia_i,b_i,c_iai,bi,ci,代表编号为ai,bia_i,b_iai,bi的点之间有一条权值为
cic_ici的有向边,每两个整数之间用一个空格隔开。
输出格式:
输出文件包含 TTT
行,每行一个整数代表答案。
输入输出样例
说明
【样例解释1】
对于第一组数据,最短路为 3。 1 – 5, 1 – 2 – 4 – 5, 1 – 2 – 3 – 5 为 3 条合法路径。
【测试数据与约定】
对于不同的测试点,我们约定各种参数的规模不会超过如下
| 测试点编号 | TTT | NNN | MMM | KKK | 是否有0边 |
|---|---|---|---|---|---|
| 1 | 5 | 5 | 10 | 0 | 否 |
| 2 | 5 | 1000 | 2000 | 0 | 否 |
| 3 | 5 | 1000 | 2000 | 50 | 否 |
| 4 | 5 | 1000 | 2000 | 50 | 否 |
| 5 | 5 | 1000 | 2000 | 50 | 否 |
| 6 | 5 | 1000 | 2000 | 50 | 是 |
| 7 | 5 | 100000 | 200000 | 0 | 否 |
| 8 | 3 | 100000 | 200000 | 50 | 否 |
| 9 | 3 | 100000 | 200000 | 50 | 是 |
| 10 | 3 | 100000 | 200000 | 50 | 是 |
对于 100%的数据, 1≤P≤109,1≤ai,bi≤N,0≤ci≤10001
\le P \le 10^9,1 \le a_i,b_i \le N ,0 \le c_i \le 10001≤P≤109,1≤ai,bi≤N,0≤ci≤1000。
数据保证:至少存在一条合法的路线。
题解
#include<iostream>
#include<cstdio>
#include<queue>
#include<cstring>
#include<algorithm>
#define LL long long int
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define fo(i,x,y) for (int i = (x); i <= (y); i++)
#define Redge(u) for (int k = head[u]; k != -1; k = edge[k].next)
using namespace std;
const int maxn = 200005,maxm = 400005,maxk = 60,INF = 1000000000;
inline int read(){
int out = 0,flag = 1;char c = getchar();
while (c < 48 || c > 57) {if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57) {out = out * 10 + c - 48; c = getchar();}
return out * flag;
}
int N,M,K,P;
int dS[maxn],dT[maxn],f[maxn][maxk],inde[maxn],id[maxn];
bool vis[maxn],zer[maxn];
int head[maxn],nedge = 0,h[maxn],ne = 0;
struct EDGE{int to,w,next;}edge[maxm],e[maxm];
inline void build(int u,int v,int w){
edge[nedge] = (EDGE) {v,w,head[u]}; head[u] = nedge++;
e[ne] = (EDGE) {u,w,h[v]}; h[v] = ne++;
if (!w) zer[u] = zer[v] = true,inde[v]++;
}
struct node{int u,d;};
inline bool operator <(const node& a,const node& b){return a.d > b.d;}
struct Node{int d,ti;}E[maxn];
inline bool cmp(const int& a,const int& b){return E[a].d == E[b].d ? E[a].ti < E[b].ti : E[a].d < E[b].d;}
void dijkstraS(){
REP(i,N) dS[i] = INF,vis[i] = false;
priority_queue<node> q;
dS[1] = 0;
q.push((node){1,dS[1]});
node u; int to;
while (!q.empty()){
u = q.top();
q.pop();
if (vis[u.u]) continue;
vis[u.u] = true;
Redge(u.u)
if (!vis[to = edge[k].to]){
if (dS[to] >= dS[u.u] + edge[k].w){
dS[to] = dS[u.u] + edge[k].w;
q.push((node){to,dS[to]});
}
}
}
}
void dijkstraT(){
REP(i,N) dT[i] = INF,vis[i] = false;
priority_queue<node> q;
dT[N] = 0;
q.push((node){N,dT[N]});
node u; int to;
while (!q.empty()){
u = q.top();
q.pop();
if (vis[u.u]) continue;
vis[u.u] = true;
for (int k = h[u.u]; k != -1; k = e[k].next)
if (!vis[to = e[k].to] && dT[to] > dT[u.u] + e[k].w){
dT[to] = dT[u.u] + e[k].w;
q.push((node){to,dT[to]});
}
}
}
bool tuopu(){
queue<int> q;
REP(i,N){
id[i] = i;
E[i].d = dS[i]; E[i].ti = 0;
if (zer[i] && !inde[i]){
q.push(i);
}
}
int u,to,cnt = 0;
while (!q.empty()){
u = q.front();
q.pop();
E[u].ti = ++cnt;
Redge(u) if (!edge[k].w){
inde[to = edge[k].to]--;
if (!inde[to]) q.push(to);
}
}
REP(i,N) if (zer[i] && inde[i] && dS[i] + dT[i] <= dT[1] + K) {printf("-1\n");return false;}
sort(id + 1,id + 1 + N,cmp);
//REP(i,N) cout<<id[i]<<' ';cout<<endl;
return true;
}
void solve(){
dijkstraS();
dijkstraT();
//REP(i,N) cout<<f[i][0]<<' ';cout<<endl;
if(!tuopu()) return;
f[1][0] = 1;
for (int j = 0; j <= K; j++)
for (int i = 1; i <= N; i++){
int u = id[i];
Redge(u){
int v = edge[k].to;
if (dS[u] + j + edge[k].w - dS[v] <= K){
f[v][dS[u] + j + edge[k].w - dS[v]] = (f[v][dS[u] + j + edge[k].w - dS[v]] + f[u][j]) % P;
}
}
}
int ans = 0;
for (int i = 0; i <= K; i++) ans = (ans + f[N][i]) % P;
printf("%d\n",ans);
}
void init(){
int a,b,c;
memset(f,0,sizeof(f));
N = read(); M = read(); K = read(); P = read();
ne = nedge = 0;
REP(i,N) head[i] = h[i] = -1,inde[i] = 0,zer[i] = false;
while (M--) {a = read(); b = read(); c = read(); build(a,b,c);}
}
int main()
{
int T = read();
while (T--){
init();
solve();
}
return 0;
}
NOIP2017 逛公园 题解报告 【最短路 + 拓扑序 + dp】的更多相关文章
- 【NOIP2017】逛公园 拆点最短路+拓扑(记忆化搜索
题目描述 策策同学特别喜欢逛公园.公园可以看成一张N个点M条边构成的有向图,且没有 自环和重边.其中1号点是公园的入口,N号点是公园的出口,每条边有一个非负权值, 代表策策经过这条边所要花的时间. 策 ...
- [NOIP2017]逛公园 题解
我连D1T3都不会我联赛完蛋了 题目描述 策策同学特别喜欢逛公园.公园可以看成一张 N 个点 M 条边构成的有向图,且没有 自环和重边.其中1号点是公园的入口, N 号点是公园的出口,每条边有一个非负 ...
- [NOIP2017] 逛公园 解题报告(DP)
我很不想说 在我的AC代码上我打了表,但实在没有办法了.莫名的8,9个点RE.然而即便是打表...也花了我很久. 这大概是NOIP2017最难的题了,为了让不懂的人更容易理解,这篇题解会比较详细 我的 ...
- [NOIP2017]逛公园 最短路+拓扑排序+dp
题目描述 给出一张 $n$ 个点 $m$ 条边的有向图,边权为非负整数.求满足路径长度小于等于 $1$ 到 $n$ 最短路 $+k$ 的 $1$ 到 $n$ 的路径条数模 $p$ ,如果有无数条则输出 ...
- [NOIP2017]逛公园 最短路图 拓扑序DP
---题面--- 题解: 挺好的一道题. 首先我们将所有边反向,跑出n到每个点的最短路,然后f[i][j]表示从i号节点出发,路径长比最短路大j的方案数. 观察到,如果图中出现了0环,那么我们可以通过 ...
- NOIP2017 Day1 T3 逛公园(最短路+拓扑排序+DP)
神tm比赛时多清个零就有60了T T 首先跑出1起点和n起点的最短路,因为k只有50,所以可以DP.设f[i][j]表示比最短路多走i的长度,到j的方案数. 我们发现如果在最短路上的和零边会有后向性, ...
- Luogu3953 NOIP2017逛公园(最短路+拓扑排序+动态规划)
跑一遍dij根据最短路DAG进行拓扑排序,按拓扑序dp即可.wa了三发感觉非常凉. #include<iostream> #include<cstdio> #include&l ...
- 【题解】NOIP2017逛公园(DP)
[题解]NOIP2017逛公园(DP) 第一次交挂了27分...我是不是必将惨败了... 考虑这样一种做法,设\(d_i\)表示从该节点到n节点的最短路径,\(dp(i,k)\)表示从\(i\)节点 ...
- [Luogu P3953] 逛公园 (最短路+拓扑排序+DP)
题面 传送门:https://www.luogu.org/problemnew/show/P3953 Solution 这是一道神题 首先,我们不妨想一下K=0,即求最短路方案数的部分分. 我们很容易 ...
随机推荐
- C#课后小作业
有关C#基础的练手 跟大家一起分享下 1.让用户输入一个100以内的数 打印1-100之间所有的数,用户输入的数除外 2.让用户输入一个100以内的数 打印1-这个数之间所有的数的和 3.使用一个fo ...
- javaweb(二十三)——jsp自定义标签开发入门
一.自定义标签的作用 自定义标签主要用于移除Jsp页面中的java代码. 二.自定义标签开发和使用 2.1.自定义标签开发步骤 1.编写一个实现Tag接口的Java类(标签处理器类) 1 packag ...
- 在spring boot上基于maven使用redis——批量匹配并删除 (二)
一.背景 在搭建了项目之后,由于需要通过触发动作,并删除redis中多个key. 二.思路 在查询了jedis并没有类似的删除方法之后,事情就变得清晰起来.完成上述任务,分为两个步骤,第一,找到要删除 ...
- 基于Spring的最简单的定时任务实现与配置(三)--番外篇 cron表达式的相关内容
本来这篇文章是会跟本系列的前两篇文章一起发布的.但是,昨天在找资料总结的时候遇到了一点意外,就延后了一些. 本篇的内容主要参考了 这篇博文:http://www.cnblogs.com/junrong ...
- Appium+python的单元测试框架unittest(2)——fixtures(转)
(原文:https://www.cnblogs.com/fancy0158/p/10046333.html) unittest提供的Fixtures用以在测试执行前和执行后进行必要的准备和清理工作,可 ...
- Linux查看文件内容
查看文件内容的命令: cat:连接文件并且打印在标准输出 tac:连接并且倒序打印文件 more:屏幕文件熟读过滤器 less head:输出文件的第一部分 tail:输出文件最后的部分 nl:输出文 ...
- 《图解 HTTP 》阅读 —— 第五章
第5章 与HTTP协作的web服务器 一台服务器可以托管多个域名. 在相同的IP地址下,虚拟主机可以寄存多个不同主机名和域名的网站,所以在发送HTTP请求时,必须在Host首部内指定完整的主机名和域名 ...
- @Resource和@Autowired的异同
相同点: 两者都能做到注入一个Bean. 两者都可应用在Field和Method上面. 两者均为Runtime级别的Retention. 不同点: 使用的场景有差异 @Resource可应用在类(TY ...
- asp.net mvc同一个view展示多个不同列表思路
asp.net mvc一个模型一个view容易展示,可是遇到像首页那样,要同时调用好几个不同表的内容一小部分展示时,该怎么是好呢? 下边根据我的测试,用的是mvc access数据测试 先建立一个强类 ...
- 3. IP地址转换函数
一.字符串表示的IP地址需要被转化为整数(二进制数)方能使用 IPv4地址:点分十进制字符串 IPv6地址:十六进制字符串 有时(如记录日志),我们则要把整数(二进制数)表示的IP地址转化为可读的字符 ...