棋盘分割(二维区间DP)
题目大意:给一个棋盘,棋盘上每个格子中都有一个值,现在需要将棋盘切成n个矩形,总共切n-1刀,求最小的均方差。均方差定义为:
,其中
。
题目分析:将均方差化简得到:均方差2=(Σxi2)/n-平均值2。显然,平均值2是定值,为数字总和除以n。只需让矩形的和的平方和最小即可。先预处理出数组s(x1,y1,x2,y2),表示左上角为(x1,y1),右下角为(x2,y2)的矩形上数字和的平方,定义dp(k,x1,y1,x2,y2)表示将矩形(x1,y1,x2,y2)切k刀能获得k+1个矩形时各矩形上数字和的最小平方和。则状态转移方程为:dp(k,x1,y1,x2,y2)=min{ min(dp(k-1,x1,y1,i,y2)+s(i+1,y1,x2,y2)),min(dp(k-1,i+1,y1,x2,y2)+s(x1,y1,i,y2))), x1≤i<x2 (横着切)
min(dp(k-1,x1,y1,x2,j)+s(x1,j+1,x2,y2)),min(dp(k-1,x1,j+1,x2,y2)+s(x1,y1,x2,j))), y1≤j<y2 (竖着切)
}
代码如下:
# include<iostream>
# include<cstring>
# include<cstdio>
# include<cmath>
# include<algorithm>
using namespace std; const int INF=1<<30; int w[8][8],n;
int dp[16][8][8][8][8],s[8][8][8][8]; int getS(int a,int b,int c,int d)
{
int sum=0;
for(int i=a;i<=c;++i)
for(int j=b;j<=d;++j)
sum+=w[i][j];
return sum*sum;
} void work(int x,int y)
{
for(int i=x;i<8;++i)
for(int j=y;j<8;++j)
s[x][y][i][j]=getS(x,y,i,j);
} void init()
{
for(int i=0;i<8;++i)
for(int j=0;j<8;++j)
work(i,j);
} void ceShi()
{
for(int i=0;i<8;++i)
for(int j=0;j<8;++j)
for(int k=i;k<8;++k)
for(int l=j;l<8;++l)
cout<<i<<' '<<j<<' '<<k<<' '<<l<<' '<<s[i][j][k][l]<<endl;
} int dfs(int k,int xa,int ya,int xb,int yb)
{
if(dp[k][xa][ya][xb][yb]>=0) return dp[k][xa][ya][xb][yb];
int &u=dp[k][xa][ya][xb][yb];
if(k==0) return u=s[xa][ya][xb][yb];
if(xa==xb&&ya==yb) return u=s[xa][ya][xb][yb];
u=INF;
for(int i=xa;i<xb;++i){
u=min(dfs(k-1,xa,ya,i,yb)+s[i+1][ya][xb][yb],u);
u=min(dfs(k-1,i+1,ya,xb,yb)+s[xa][ya][i][yb],u);
}
for(int i=ya;i<yb;++i){
u=min(dfs(k-1,xa,ya,xb,i)+s[xa][i+1][xb][yb],u);
u=min(dfs(k-1,xa,i+1,xb,yb)+s[xa][ya][xb][i],u);
}
return u;
} int main()
{
while(~scanf("%d",&n))
{
double sum=0.0;
for(int i=0;i<8;++i)
for(int j=0;j<8;++j){
scanf("%d",&w[i][j]);
sum+=(double)w[i][j];
}
sum/=(double)n;
memset(s,0,sizeof(s));
init();
//ceShi();
memset(dp,-1,sizeof(dp));
dfs(n-1,0,0,7,7);
double ans=(double)dp[n-1][0][0][7][7]/(double)n-sum*sum;
printf("%.3lf\n",sqrt(ans));
}
return 0;
}
棋盘分割(二维区间DP)的更多相关文章
- The UVALIVE 7716 二维区间第k小
The UVALIVE 7716 二维区间第k小 /** 题意:给一个n * n的矩阵,有q个查询 每次查询r,c,s,k表示已(r,c)为右上角 大小为s的正方形中 第k小的元素 n <= 2 ...
- POJ - 1191 棋盘分割 记忆递归 搜索dp+数学
http://poj.org/problem?id=1191 题意:中文题. 题解: 1.关于切割的模拟,用递归 有这样的递归方程(dp方程):f(n,棋盘)=f(n-1,待割的棋盘)+f(1,割下的 ...
- [NOI1999] 棋盘分割(推式子+dp)
http://poj.org/problem?id=1191 棋盘分割 Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 156 ...
- 字符串分割+二维数组 Day15练习
package com.sxt.arrays.test; import java.util.Arrays; /* 1,2,3,4!5,6,7!8,9!12,456,90!32 * 将此字符串以叹号为分 ...
- BZOJ2877 NOI2012魔幻棋盘(二维线段树)
显然一个序列的gcd=gcd(其差分序列的gcd,序列中第一个数).于是一维情况直接线段树维护差分序列即可. 容易想到将该做法拓展到二维.于是考虑维护二维差分,查询时对差分矩阵求矩形的gcd,再对矩形 ...
- NYOJ15|括号匹配(二)|区间DP|Elena
括号匹配(二) 时间限制:1000 ms | 内存限制:65535 KB 难度:6 描述 给你一个字符串,里面只包含"(",")","[&qu ...
- Vijos1392拼拼图的小衫[背包DP|二维信息DP]
背景 小杉的幻想来到了经典日剧<死亡拼图>的场景里……被歹徒威胁,他正在寻找拼图(-.-干嘛幻想这么郁闷的场景……). 突然广播又响了起来,歹徒竟然又有了新的指示. 小杉身为新一代的汤浅, ...
- UVA1347 旅游(二维递归DP)
旅游 [题目链接]旅游 [题目类型]DP &题解: 紫书P269 代码很简单,但思路很难.很难能想到要把一个圈分成2条线段,很难想到d(i,j)表示的是已经走过max(i,j)还需要的距离值, ...
- NYOJ737石子合并(二)-(区间dp)
题目描述: 有N堆石子排成一排,每堆石子有一定的数量.现要将N堆石子并成为一堆.合并的过程只能每次将相邻的两堆石子堆成一堆,每次合并花费的代价为这两堆石子的和,经过N-1次合并后成为一堆.求出 ...
随机推荐
- JS实现数字千位符格式化方法
/** * [number_format 参数说明:] * @param {[type]} number [number:要格式化的数字] * @param {[type]} decimals [de ...
- Django - 常用配置
一.logging配置 Django项目常用的logging配置 settings.py LOGGING = { 'version': 1, 'disable_existing_loggers': F ...
- 007-spring cache-缓存实现-02-springboot ehcahe3实现、springboot caffeine实现
一.springboot ehcahe3实现步骤 EhCache 是一个纯Java的进程内缓存框架,具有快速.精干等特点,是Hibernate中默认CacheProvider.Ehcache是一种广泛 ...
- log4j2动态修改日志级别及拓展性使用
一.供参考的完整日志配置 <?xml version="1.0" encoding="UTF-8"?> <!-- 配置LoggerConfig ...
- JavaScript修改CSS属性的实例代码
用原生的javascript修改CSS属性的方法. 用JavaScript修改CSS属性 只有写原生的javascript了. 1.用JS修改标签的 class 属性值: class 属性是在标签 ...
- android中代码操作外部SD卡出错:W/System.err(1595): Caused by: libcore.io.ErrnoException: open failed: EACCES (Permission denied)
AndroidManifest.xml 中加上: <uses-permission android:name="android.permission.WRITE_EXTERNAL_ST ...
- DNS服务器配置实践
实验背景:在Linux系统上配置主要DNS服务器和辅助DNS服务器,所在域名为example.com,子网为192.168.X.0. 启动已安装LINUX系统,进行DNS服务器配置. 一.配置主要DN ...
- centos配置用户级别的jdk的环境变量
前面讲解了centos配置jdk的环境变量 的root级别的jdk配置 ,这里讲解用户级别的jdk配置. 在用户的当前目录下,如下,有四个隐藏的文件,文件打头是.bash******: 1.编辑.ba ...
- Linux 查看系统所有用户
grep bash /etc/passwd Linux 查看系统所有用户
- express 项目前后台公用样式 /static/js/bootstrap.min.js
express 项目前后台公用样式 /static/js/bootstrap.min.js