SalGAN: Visual saliency prediction with generative adversarial networks
SalGAN: Visual saliency prediction with generative adversarial networks
2017-03-17
摘要:本文引入了对抗网络的对抗训练机制来进行显著性物体的预测。虽然我们老板很不喜欢显著性,但是,做显著性检测的人还是会说:这是有意义的。如本文说的:恩,显著性可以作为 soft-attention,来引导其他计算机视觉任务的进行,也可以直接引导 marketing 领域。
本文区别于其他方法最显著的地方在于:the usage of generatvie adversarial networks。本文将训练分为两个阶段:
1. 产生器产生一个服从训练集合的伪造的样本;
2. 判别器就是用于判断给定的样本是 真实的 还是 伪造的。
本文中谈到的 data distribution 意思是:实际的图像 和 对应的显著性图。
本文总结的贡献点是:
1. 探索了 GAN 在显著性物体检测上的应用,在某些数据集上取得了不错的效果;
2. 在训练 DCNN 时,应用 二元交叉熵损失函数 和 下采样显著性图 是可以提升效果的。
本文的网络框架设计如图所示:

网络结构分析:
1. 产生器:
Convolutional encoder-decoder architecture
2. 判别器:
就是一个 CNN 结构。
训练(Training):
1. Content Loss
由于 产生器 部分的输出是 saliency map,要计算的这部分就是:输出的 saliency map 和 gt saliency map 之间均方差 loss 。
用的就是 两个 map 之间的欧式距离:

本文中 MSE 就是用来作为 baseline 的,因为大部分显著性检测的方法都是基于这个 loss function。GT saliency maps 被归一化到 0-1 之间。
这里用到了 二元交叉熵损失函数:

2. 对抗损失
关于 GAN 这里就不在介绍了,那么显著性检测和 gan 有什么不同呢?
1. 首先,目标是拟合一个 决策函数 来产生实际的 saliency values,而不是从随机的 noise 中得到 真实的图像;
这样的话,输入给产生器的东西就不再是 随机的 noise,而是一张图像;
2. 其次,显著性所对应的图 是衡量质量的;
所以我们将图像和 saliency map 作为输入给产生器
3. 最后,在 GAN 产生图像的时候,没有 gt 进行对比,属于无监督学习;
但是,在显著性检测的时候,我们是有现有的 gt 作为对比的。
我们发现产生器函数更新的时候,我们发现 利用判别器的loss 和 对比gt得到的交叉熵损失函数,可以显著地提升对抗训练的稳定性和收敛速度。
最终的 loss function 可以定义为:

实验结果:

SalGAN: Visual saliency prediction with generative adversarial networks的更多相关文章
- GD-GAN: Generative Adversarial Networks for Trajectory Prediction and Group Detection in Crowds
GD-GAN: Generative Adversarial Networks for Trajectory Prediction and Group Detection in Crowds 2019 ...
- 语音合成论文翻译:2019_MelGAN: Generative Adversarial Networks for Conditional Waveform Synthesis
论文地址:MelGAN:条件波形合成的生成对抗网络 代码地址:https://github.com/descriptinc/melgan-neurips 音频实例:https://melgan-neu ...
- StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks 论文笔记
StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks 本文将利 ...
- 论文笔记之:Semi-Supervised Learning with Generative Adversarial Networks
Semi-Supervised Learning with Generative Adversarial Networks 引言:本文将产生式对抗网络(GAN)拓展到半监督学习,通过强制判别器来输出类 ...
- 《Self-Attention Generative Adversarial Networks》里的注意力计算
前天看了 criss-cross 里的注意力模型 仔细理解了 在: https://www.cnblogs.com/yjphhw/p/10750797.html 今天又看了一个注意力模型 < ...
- Paper Reading: Perceptual Generative Adversarial Networks for Small Object Detection
Perceptual Generative Adversarial Networks for Small Object Detection 2017-07-11 19:47:46 CVPR 20 ...
- (转)Introductory guide to Generative Adversarial Networks (GANs) and their promise!
Introductory guide to Generative Adversarial Networks (GANs) and their promise! Introduction Neural ...
- Generative Adversarial Networks,gan论文的畅想
前天看完Generative Adversarial Networks的论文,不知道有什么用处,总想着机器生成的数据会有机器的局限性,所以百度看了一些别人 的看法和观点,可能我是机器学习小白吧,看完之 ...
- 论文笔记之:UNSUPERVISED REPRESENTATION LEARNING WITH DEEP CONVOLUTIONAL GENERATIVE ADVERSARIAL NETWORKS
UNSUPERVISED REPRESENTATION LEARNING WITH DEEP CONVOLUTIONAL GENERATIVE ADVERSARIAL NETWORKS ICLR 2 ...
随机推荐
- Widget Factory (高斯消元解线性方程组)
The widget factory produces several different kinds of widgets. Each widget is carefully built by a ...
- 准备dbcp2-2.1.1和pool2-2.4.2 、commons-dbcp-1.4jar包
下载地址:https://pan.baidu.com/s/1gtcW36Lz6Yt-j9WlTu31Pw
- Solid Dominoes Tilings (轮廓线dp打表 + 容器)
第一步先打一个表,就是利用轮廓线DP去打一个没有管有没有分界线组合数量的表 #include<bits/stdc++.h> using namespace std; ; <<; ...
- scrapy:get cookie from response
scrapy shell fetch('your_url') response.headers.getlist("Set-Cookie")https://stackoverflow ...
- 开源词袋模型DBow3原理&源码(二)ORB特征的保存和读取
util里提供了create_voc_step0用于批量生成features并保存,create_voc_step1读入features再生成聚类中心,比较适合大量语料库聚类中心的生成. 提取一张图的 ...
- JavaScript使用localStorage缓存Js和css文件
对于WebApp来说,将js css文件缓存到localstorage区可以减少页面在加载时与HTTP请求的交互次数,从而优化页面的加载时间.特别是当移端信号不好高延迟时优化效果还是很显见的 下面的代 ...
- 51Nod 1433 0和5
小K手中有n张牌,每张牌上有一个一位数的数,这个字数不是0就是5.小K从这些牌在抽出任意张(不能抽0张),排成一行这样就组成了一个数.使得这个数尽可能大,而且可以被90整除. 注意: 1.这个数没有前 ...
- python--字典dict
字典由多个键与其对应的值构成的对组成,是另一种可变容器模型,且可存储任意类型对象.字典的每个键值用冒号(:)分割,每个对之间用逗号(,)分割,整个字典包括在花括号({})中. 注:字典中的键是唯一的( ...
- Icarscan VCI is definitely the update variation of Start iDiag
Start iCarScan is alternative of Super X431 iDiag, it’ll make your Android smartphone or tablet righ ...
- A2W,W2A等的使用
#include <atlbase.h> #include <atlconv.h> 代码块 { ...... USES_CONVERSION; CString TempDirP ...