God Water likes to eat meat, fish and chocolate very much, but unfortunately, the doctor tells him that some sequence of eating will make them poisonous.

Every hour, God Water will eat one kind of food among meat, fish and chocolate. If there are 3 continuous hours when he eats only one kind of food, he will be unhappy. Besides, if there are 3 continuous hours when he eats all kinds of those, with chocolate at the middle hour, it will be dangerous. Moreover, if there are 3 continuous hours when he eats meat or fish at the middle hour, with chocolate at other two hours, it will also be dangerous.

Now, you are the doctor. Can you find out how many different kinds of diet that can make God Water happy and safe during N hours? Two kinds of diet are considered the same if they share the same kind of food at the same hour. The answer may be very large, so you only need to give out the answer module 1000000007.

Input

The fist line puts an integer T that shows the number of test cases. (T≤1000)

Each of the next T lines contains an integer N that shows the number of hours. (1≤N≤1010)

Output

For each test case, output a single line containing the answer.

样例输入

3
3
4
15

样例输出

20
46
435170

题目来源

ACM-ICPC 2018 焦作赛区网络预赛

题意

God Water喜欢吃肉,鱼和巧克力。但是不能连着三小时吃同一种食物,如果连着三个小时吃的食物不一样,那么中间那个小时不能吃巧克力,如果中间那个小时没有吃巧克力,那么第一和第三小时都不能吃巧克力

设:(1)巧克力   (2)鱼   (3)肉

则不符合题意的排列有:111   222   333   213   312   121   131

求n个小时一共有多少种不同的吃食物的方法

思路

DP学长用暴力打出来了前二十项的表,然后得到了一个从第六项开始的递退公式:a[i]=2*a[i-1]-a[i-2]+3*a[i-3]+2*a[i-4]

然后听说BM模板可以直接求任意的线性递推式的任意项,就百度抄了dls的DM模板,学长们是用矩阵快速幂写的

//下面是代码

学长打表用的代码

#pragma GCC optimize ("O3")
#pragma GCC optimize ("O2")
#include <bits/stdc++.h>
#include <ext/rope>
using namespace std;
using namespace __gnu_cxx;
#define met(s) memset(s, 0, sizeof(s))
#define RR (LL + 1)
typedef long long LL;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<LL, LL> pii;
const int INF = 0x3f3f3f3f;
const ull TOP = (ull)1e17;
const LL MOD = 1e9 + 7;
const int MAXN = 1e5 + 20;
int a[MAXN];
int T, n, ans; void dfs(int x) {
if(x >= 3) {
if(a[x - 2] == 1) {
if(a[x - 1] == 1 && a[x] == 1) return ;
if(a[x - 1] == 0 && a[x] == 2) return ;
}
else if(a[x - 2] == 2) {
if(a[x - 1] == 2 && a[x] == 2) return ;
if(a[x - 1] == 0 && a[x] == 1) return ;
}
else {
if(a[x - 1] == 0 && a[x] == 0) return ;
if(a[x - 1] == 1 && a[x] == 0) return ;
if(a[x - 1] == 2 && a[x] == 0) return ;
}
}
if(x == n) {
ans++;
return ;
}
for(int i = 0; i < 3; ++i) {
a[x + 1] = i;
dfs(x + 1);
}
} int main() {
for(int i = 1; i <= 20; ++i) {
ans = 0;
n = i;
dfs(0);
printf("{%d,%d}\n", i, ans);
}
return 0;
}

AC代码

BM模板

#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <vector>
#include <string>
#include <map>
#include <set>
#include <cassert>
using namespace std;
#define rep(i,a,n) for (int i=a;i<n;i++)
#define per(i,a,n) for (int i=n-1;i>=a;i--)
#define pb push_back
#define mp make_pair
#define all(x) (x).begin(),(x).end()
#define fi first
#define se second
#define SZ(x) ((int)(x).size())
typedef vector<int> VI;
typedef long long ll;
typedef pair<int,int> PII;
const ll mod=1000000007;
ll powmod(ll a,ll b) {ll res=1;a%=mod; assert(b>=0);
for(;b;b>>=1){if(b&1)res=res*a%mod;a=a*a%mod;}return res;}
int _;
ll n;
namespace linear_seq {
const int N=10010;
ll res[N],base[N],_c[N],_md[N]; vector<int> Md;
void mul(ll *a,ll *b,int k) {
rep(i,0,k+k) _c[i]=0;
rep(i,0,k) if (a[i]) rep(j,0,k) _c[i+j]=(_c[i+j]+a[i]*b[j])%mod;
for (int i=k+k-1;i>=k;i--) if (_c[i])
rep(j,0,SZ(Md)) _c[i-k+Md[j]]=(_c[i-k+Md[j]]-_c[i]*_md[Md[j]])%mod;
rep(i,0,k) a[i]=_c[i];
}
int solve(ll n,VI a,VI b) {
ll ans=0,pnt=0;
int k=SZ(a);
assert(SZ(a)==SZ(b));
rep(i,0,k) _md[k-1-i]=-a[i];_md[k]=1;
Md.clear();
rep(i,0,k) if (_md[i]!=0) Md.push_back(i);
rep(i,0,k) res[i]=base[i]=0;
res[0]=1;
while ((1ll<<pnt)<=n) pnt++;
for (int p=pnt;p>=0;p--) {
mul(res,res,k);
if ((n>>p)&1) {
for (int i=k-1;i>=0;i--) res[i+1]=res[i];res[0]=0;
rep(j,0,SZ(Md)) res[Md[j]]=(res[Md[j]]-res[k]*_md[Md[j]])%mod;
}
}
rep(i,0,k) ans=(ans+res[i]*b[i])%mod;
if (ans<0) ans+=mod;
return ans;
}
VI BM(VI s) {
VI C(1,1),B(1,1);
int L=0,m=1,b=1;
rep(n,0,SZ(s)) {
ll d=0;
rep(i,0,L+1) d=(d+(ll)C[i]*s[n-i])%mod;
if (d==0) ++m;
else if (2*L<=n) {
VI T=C;
ll c=mod-d*powmod(b,mod-2)%mod;
while (SZ(C)<SZ(B)+m) C.pb(0);
rep(i,0,SZ(B)) C[i+m]=(C[i+m]+c*B[i])%mod;
L=n+1-L; B=T; b=d; m=1;
} else {
ll c=mod-d*powmod(b,mod-2)%mod;
while (SZ(C)<SZ(B)+m) C.pb(0);
rep(i,0,SZ(B)) C[i+m]=(C[i+m]+c*B[i])%mod;
++m;
}
}
return C;
}
int gao(VI a,ll n) {
VI c=BM(a);
c.erase(c.begin());
rep(i,0,SZ(c)) c[i]=(mod-c[i])%mod;
return solve(n,c,VI(a.begin(),a.begin()+SZ(c)));
}
}; int main() {
scanf("%d",&_);
while(_--)
{
vector<int>v;
v.push_back(3);
v.push_back(9);
v.push_back(20);
v.push_back(46);
v.push_back(106);
v.push_back(244);
v.push_back(560);
v.push_back(1286);
v.push_back(2956);
v.push_back(6794);
v.push_back(15610);
v.push_back(35866);
v.push_back(82416);
scanf("%lld",&n);
printf("%d\n",linear_seq::gao(v,n-1));
}
}

矩阵快速幂

#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const LL mod = 1000000007; struct mat {
LL mapp[4][4];
}; mat mat_pow(mat A, mat B) {
mat C;
memset(C.mapp, 0, sizeof(C.mapp));
for(int i = 0; i < 4; i++) {
for(int j = 0; j < 4; j++) {
for(int k = 0; k < 4; k++) {
C.mapp[i][k] = (C.mapp[i][k] + A.mapp[i][j] * B.mapp[j][k]) % mod;
}
}
}
return C;
} mat mat_mul(mat A, LL b) {
mat ans;
memset(ans.mapp, 0, sizeof(ans.mapp));
ans.mapp[0][0] = ans.mapp[1][1] = ans.mapp[2][2] = ans.mapp[3][3] = 1;
while(b) {
if(b & 1)
ans = mat_pow(ans, A);
A = mat_pow(A, A);
b >>= 1;
}
return ans;
} LL f[] = {3, 9, 20, 46, 106, 244, 560, 1286, 2956, 6794, 15610, 35866, 82416, 189384, 435170, 999936, 2297686, 5279714, 12131890};
int main() {
int T; LL n; mat A, ans;
ans.mapp[0][0] = 2, ans.mapp[0][1] = -1, ans.mapp[0][2] = 3, ans.mapp[0][3] = 2;
ans.mapp[1][0] = 1, ans.mapp[1][1] = 0, ans.mapp[1][2] = 0, ans.mapp[1][3] = 0;
ans.mapp[2][0] = 0, ans.mapp[2][1] = 1, ans.mapp[2][2] = 0, ans.mapp[2][3] = 0;
ans.mapp[3][0] = 0, ans.mapp[3][1] = 0, ans.mapp[3][2] = 1, ans.mapp[3][3] = 0;
memset(A.mapp, 0, sizeof(A.mapp));
A.mapp[0][0] = 106, A.mapp[1][0] = 46, A.mapp[2][0] = 20, A.mapp[3][0] = 9;
scanf("%d", &T);
while(T--) {
scanf("%lld", &n);
if(n <= 10) {
printf("%lld\n", f[n - 1]);
continue;
}
mat B = mat_mul(ans, n - 5);
B = mat_pow(B, A);
printf("%lld\n", B.mapp[0][0] % mod);
}
return 0;
}

ACM-ICPC 2018 焦作赛区网络预赛- L:Poor God Water(BM模板/矩阵快速幂)的更多相关文章

  1. ACM-ICPC 2018 焦作赛区网络预赛 L Poor God Water(矩阵快速幂,BM)

    https://nanti.jisuanke.com/t/31721 题意 有肉,鱼,巧克力三种食物,有几种禁忌,对于连续的三个食物:1.这三个食物不能都相同:2.若三种食物都有的情况,巧克力不能在中 ...

  2. ACM-ICPC 2018 焦作赛区网络预赛 L 题 Poor God Water

    God Water likes to eat meat, fish and chocolate very much, but unfortunately, the doctor tells him t ...

  3. ACM-ICPC 2018 焦作赛区网络预赛 L:Poor God Water(矩阵快速幂)

    God Water likes to eat meat, fish and chocolate very much, but unfortunately, the doctor tells him t ...

  4. ACM-ICPC 2018 焦作赛区网络预赛- G:Give Candies(费马小定理,快速幂)

    There are N children in kindergarten. Miss Li bought them NNN candies. To make the process more inte ...

  5. ACM-ICPC 2018 焦作赛区网络预赛

    这场打得还是比较爽的,但是队友差一点就再过一题,还是难受啊. 每天都有新的难过 A. Magic Mirror Jessie has a magic mirror. Every morning she ...

  6. ACM-ICPC 2018 焦作赛区网络预赛J题 Participate in E-sports

    Jessie and Justin want to participate in e-sports. E-sports contain many games, but they don't know ...

  7. ACM-ICPC 2018 焦作赛区网络预赛 K题 Transport Ship

    There are NN different kinds of transport ships on the port. The i^{th}ith kind of ship can carry th ...

  8. ACM-ICPC 2018 焦作赛区网络预赛 I题 Save the Room

    Bob is a sorcerer. He lives in a cuboid room which has a length of AA, a width of BB and a height of ...

  9. ACM-ICPC 2018 焦作赛区网络预赛 H题 String and Times(SAM)

    Now you have a string consists of uppercase letters, two integers AA and BB. We call a substring won ...

随机推荐

  1. 微服务之SpringCloud基础

    SpringCloud微服务基础 微服务架构--SpringCloud网站架构模式 单点应用/分布式系统面向于服务架构(SOA) /微服务架构web项目三层架构1.控制层2.业务逻辑层3.数据访问层传 ...

  2. swiper添加了自动滚动效果,然后用手指划过页面,发现自动滚动效果不生效了

    我给swiper添加了自动滚动效果,然后用手指划过页面,发现自动滚动效果不生效了,哪里出了问题呢? 添加参数 autoplayDisableOnInteraction : false,

  3. C# 中web如何定时同步数据

    之前做定时器同步方法试过很多方法, 不过都有些问题 1)quartz + IIS 方式(web项目发布到IIS上,出现IIS应用池回收问题) 2)用线程Timer方式 (出现多个线程同步同个任务问题) ...

  4. ID基本操作(标尺,参考线,网格)5.11

    参考线:标尺参考线,分栏参考线,出血参考线.在创建参考线之前确保标尺和参考线都可见.并且选中正确的跨页和页面作为目标, “版面”“创建参考线”可以输入数值创建参考线. 跨页参考线的创建:拖动参考线时鼠 ...

  5. shell 整数条件判断

    两个整数的比较 '整数1 -eq 整数2' 判断整数1是否和整数2相等(相等为真) '整数1 -ne 整数2' 判断整数1是否和整数2不相等(不相等位置) '整数1 -gt 整数2' 判断整数1是否大 ...

  6. 验证码 kaptcha 参数详解

    Constant 描述 默认值 kaptcha.border 图片边框,合法值:yes , no yes kaptcha.border.color 边框颜色,合法值: r,g,b (and optio ...

  7. tf.nn.conv2d

    tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None, name=None) input: 指需要做卷积的输入图像,它 ...

  8. MeshLab 编译

    1.需要以下:  MeshLab 1.3.3  下载地址 http://sourceforge.net/projects/meshlab/files/meshlab Win7 X64  Visual ...

  9. 第二章 使用unittest模块扩展功能测试

    2.1使用功能测试驱动开放一个最简单的应用 # functional_tests.py # -*- coding: utf-8 -*- from selenium import webdriver b ...

  10. SQL-29 使用join查询方式找出没有分类的电影id以及名称

    题目描述 film表 字段 说明 film_id 电影id title 电影名称 description 电影描述信息 CREATE TABLE IF NOT EXISTS film ( film_i ...