ACM-ICPC 2018 焦作赛区网络预赛- L:Poor God Water(BM模板/矩阵快速幂)
God Water likes to eat meat, fish and chocolate very much, but unfortunately, the doctor tells him that some sequence of eating will make them poisonous.
Every hour, God Water will eat one kind of food among meat, fish and chocolate. If there are 3 continuous hours when he eats only one kind of food, he will be unhappy. Besides, if there are 3 continuous hours when he eats all kinds of those, with chocolate at the middle hour, it will be dangerous. Moreover, if there are 3 continuous hours when he eats meat or fish at the middle hour, with chocolate at other two hours, it will also be dangerous.
Now, you are the doctor. Can you find out how many different kinds of diet that can make God Water happy and safe during N hours? Two kinds of diet are considered the same if they share the same kind of food at the same hour. The answer may be very large, so you only need to give out the answer module 1000000007.
Input
The fist line puts an integer T that shows the number of test cases. (T≤1000)
Each of the next T lines contains an integer N that shows the number of hours. (1≤N≤1010)
Output
For each test case, output a single line containing the answer.
样例输入
3
3
4
15
样例输出
20
46
435170
题目来源
题意
God Water喜欢吃肉,鱼和巧克力。但是不能连着三小时吃同一种食物,如果连着三个小时吃的食物不一样,那么中间那个小时不能吃巧克力,如果中间那个小时没有吃巧克力,那么第一和第三小时都不能吃巧克力
设:(1)巧克力 (2)鱼 (3)肉
则不符合题意的排列有:111 222 333 213 312 121 131
求n个小时一共有多少种不同的吃食物的方法
思路
DP学长用暴力打出来了前二十项的表,然后得到了一个从第六项开始的递退公式:a[i]=2*a[i-1]-a[i-2]+3*a[i-3]+2*a[i-4]
然后听说BM模板可以直接求任意的线性递推式的任意项,就百度抄了dls的DM模板,学长们是用矩阵快速幂写的
//下面是代码
学长打表用的代码
#pragma GCC optimize ("O3")
#pragma GCC optimize ("O2")
#include <bits/stdc++.h>
#include <ext/rope>
using namespace std;
using namespace __gnu_cxx;
#define met(s) memset(s, 0, sizeof(s))
#define RR (LL + 1)
typedef long long LL;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<LL, LL> pii;
const int INF = 0x3f3f3f3f;
const ull TOP = (ull)1e17;
const LL MOD = 1e9 + 7;
const int MAXN = 1e5 + 20;
int a[MAXN];
int T, n, ans;
void dfs(int x) {
if(x >= 3) {
if(a[x - 2] == 1) {
if(a[x - 1] == 1 && a[x] == 1) return ;
if(a[x - 1] == 0 && a[x] == 2) return ;
}
else if(a[x - 2] == 2) {
if(a[x - 1] == 2 && a[x] == 2) return ;
if(a[x - 1] == 0 && a[x] == 1) return ;
}
else {
if(a[x - 1] == 0 && a[x] == 0) return ;
if(a[x - 1] == 1 && a[x] == 0) return ;
if(a[x - 1] == 2 && a[x] == 0) return ;
}
}
if(x == n) {
ans++;
return ;
}
for(int i = 0; i < 3; ++i) {
a[x + 1] = i;
dfs(x + 1);
}
}
int main() {
for(int i = 1; i <= 20; ++i) {
ans = 0;
n = i;
dfs(0);
printf("{%d,%d}\n", i, ans);
}
return 0;
}
AC代码
BM模板
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <vector>
#include <string>
#include <map>
#include <set>
#include <cassert>
using namespace std;
#define rep(i,a,n) for (int i=a;i<n;i++)
#define per(i,a,n) for (int i=n-1;i>=a;i--)
#define pb push_back
#define mp make_pair
#define all(x) (x).begin(),(x).end()
#define fi first
#define se second
#define SZ(x) ((int)(x).size())
typedef vector<int> VI;
typedef long long ll;
typedef pair<int,int> PII;
const ll mod=1000000007;
ll powmod(ll a,ll b) {ll res=1;a%=mod; assert(b>=0);
for(;b;b>>=1){if(b&1)res=res*a%mod;a=a*a%mod;}return res;}
int _;
ll n;
namespace linear_seq {
const int N=10010;
ll res[N],base[N],_c[N],_md[N];
vector<int> Md;
void mul(ll *a,ll *b,int k) {
rep(i,0,k+k) _c[i]=0;
rep(i,0,k) if (a[i]) rep(j,0,k) _c[i+j]=(_c[i+j]+a[i]*b[j])%mod;
for (int i=k+k-1;i>=k;i--) if (_c[i])
rep(j,0,SZ(Md)) _c[i-k+Md[j]]=(_c[i-k+Md[j]]-_c[i]*_md[Md[j]])%mod;
rep(i,0,k) a[i]=_c[i];
}
int solve(ll n,VI a,VI b) {
ll ans=0,pnt=0;
int k=SZ(a);
assert(SZ(a)==SZ(b));
rep(i,0,k) _md[k-1-i]=-a[i];_md[k]=1;
Md.clear();
rep(i,0,k) if (_md[i]!=0) Md.push_back(i);
rep(i,0,k) res[i]=base[i]=0;
res[0]=1;
while ((1ll<<pnt)<=n) pnt++;
for (int p=pnt;p>=0;p--) {
mul(res,res,k);
if ((n>>p)&1) {
for (int i=k-1;i>=0;i--) res[i+1]=res[i];res[0]=0;
rep(j,0,SZ(Md)) res[Md[j]]=(res[Md[j]]-res[k]*_md[Md[j]])%mod;
}
}
rep(i,0,k) ans=(ans+res[i]*b[i])%mod;
if (ans<0) ans+=mod;
return ans;
}
VI BM(VI s) {
VI C(1,1),B(1,1);
int L=0,m=1,b=1;
rep(n,0,SZ(s)) {
ll d=0;
rep(i,0,L+1) d=(d+(ll)C[i]*s[n-i])%mod;
if (d==0) ++m;
else if (2*L<=n) {
VI T=C;
ll c=mod-d*powmod(b,mod-2)%mod;
while (SZ(C)<SZ(B)+m) C.pb(0);
rep(i,0,SZ(B)) C[i+m]=(C[i+m]+c*B[i])%mod;
L=n+1-L; B=T; b=d; m=1;
} else {
ll c=mod-d*powmod(b,mod-2)%mod;
while (SZ(C)<SZ(B)+m) C.pb(0);
rep(i,0,SZ(B)) C[i+m]=(C[i+m]+c*B[i])%mod;
++m;
}
}
return C;
}
int gao(VI a,ll n) {
VI c=BM(a);
c.erase(c.begin());
rep(i,0,SZ(c)) c[i]=(mod-c[i])%mod;
return solve(n,c,VI(a.begin(),a.begin()+SZ(c)));
}
};
int main() {
scanf("%d",&_);
while(_--)
{
vector<int>v;
v.push_back(3);
v.push_back(9);
v.push_back(20);
v.push_back(46);
v.push_back(106);
v.push_back(244);
v.push_back(560);
v.push_back(1286);
v.push_back(2956);
v.push_back(6794);
v.push_back(15610);
v.push_back(35866);
v.push_back(82416);
scanf("%lld",&n);
printf("%d\n",linear_seq::gao(v,n-1));
}
}
矩阵快速幂
#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const LL mod = 1000000007;
struct mat {
LL mapp[4][4];
};
mat mat_pow(mat A, mat B) {
mat C;
memset(C.mapp, 0, sizeof(C.mapp));
for(int i = 0; i < 4; i++) {
for(int j = 0; j < 4; j++) {
for(int k = 0; k < 4; k++) {
C.mapp[i][k] = (C.mapp[i][k] + A.mapp[i][j] * B.mapp[j][k]) % mod;
}
}
}
return C;
}
mat mat_mul(mat A, LL b) {
mat ans;
memset(ans.mapp, 0, sizeof(ans.mapp));
ans.mapp[0][0] = ans.mapp[1][1] = ans.mapp[2][2] = ans.mapp[3][3] = 1;
while(b) {
if(b & 1)
ans = mat_pow(ans, A);
A = mat_pow(A, A);
b >>= 1;
}
return ans;
}
LL f[] = {3, 9, 20, 46, 106, 244, 560, 1286, 2956, 6794, 15610, 35866, 82416, 189384, 435170, 999936, 2297686, 5279714, 12131890};
int main() {
int T; LL n; mat A, ans;
ans.mapp[0][0] = 2, ans.mapp[0][1] = -1, ans.mapp[0][2] = 3, ans.mapp[0][3] = 2;
ans.mapp[1][0] = 1, ans.mapp[1][1] = 0, ans.mapp[1][2] = 0, ans.mapp[1][3] = 0;
ans.mapp[2][0] = 0, ans.mapp[2][1] = 1, ans.mapp[2][2] = 0, ans.mapp[2][3] = 0;
ans.mapp[3][0] = 0, ans.mapp[3][1] = 0, ans.mapp[3][2] = 1, ans.mapp[3][3] = 0;
memset(A.mapp, 0, sizeof(A.mapp));
A.mapp[0][0] = 106, A.mapp[1][0] = 46, A.mapp[2][0] = 20, A.mapp[3][0] = 9;
scanf("%d", &T);
while(T--) {
scanf("%lld", &n);
if(n <= 10) {
printf("%lld\n", f[n - 1]);
continue;
}
mat B = mat_mul(ans, n - 5);
B = mat_pow(B, A);
printf("%lld\n", B.mapp[0][0] % mod);
}
return 0;
}
ACM-ICPC 2018 焦作赛区网络预赛- L:Poor God Water(BM模板/矩阵快速幂)的更多相关文章
- ACM-ICPC 2018 焦作赛区网络预赛 L Poor God Water(矩阵快速幂,BM)
https://nanti.jisuanke.com/t/31721 题意 有肉,鱼,巧克力三种食物,有几种禁忌,对于连续的三个食物:1.这三个食物不能都相同:2.若三种食物都有的情况,巧克力不能在中 ...
- ACM-ICPC 2018 焦作赛区网络预赛 L 题 Poor God Water
God Water likes to eat meat, fish and chocolate very much, but unfortunately, the doctor tells him t ...
- ACM-ICPC 2018 焦作赛区网络预赛 L:Poor God Water(矩阵快速幂)
God Water likes to eat meat, fish and chocolate very much, but unfortunately, the doctor tells him t ...
- ACM-ICPC 2018 焦作赛区网络预赛- G:Give Candies(费马小定理,快速幂)
There are N children in kindergarten. Miss Li bought them NNN candies. To make the process more inte ...
- ACM-ICPC 2018 焦作赛区网络预赛
这场打得还是比较爽的,但是队友差一点就再过一题,还是难受啊. 每天都有新的难过 A. Magic Mirror Jessie has a magic mirror. Every morning she ...
- ACM-ICPC 2018 焦作赛区网络预赛J题 Participate in E-sports
Jessie and Justin want to participate in e-sports. E-sports contain many games, but they don't know ...
- ACM-ICPC 2018 焦作赛区网络预赛 K题 Transport Ship
There are NN different kinds of transport ships on the port. The i^{th}ith kind of ship can carry th ...
- ACM-ICPC 2018 焦作赛区网络预赛 I题 Save the Room
Bob is a sorcerer. He lives in a cuboid room which has a length of AA, a width of BB and a height of ...
- ACM-ICPC 2018 焦作赛区网络预赛 H题 String and Times(SAM)
Now you have a string consists of uppercase letters, two integers AA and BB. We call a substring won ...
随机推荐
- python ctrl+c
#!/usr/bin/env pythonimport signalimport sysimport osdef signal_handler(signal, frame): print('You p ...
- 【基础】iframe之间的切换(四)
案例: 打开http://mail.126.com/,定位登录输入框时,却总是定位不到元素,后来发现,登录的内容在一个iframe中. 一.由主页面切换至iframe dr.switchTo().fr ...
- win7 php nginx 启动命令
1 php 启动命令 @echo off e: cd E:/php-/ echo "php is starting on port 9007, php_version is 7.0.6&qu ...
- UVA LA 3983 - Robotruck DP,优先队列 难度: 2
题目 https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&page=show_pr ...
- Module loader:模块加载器
<p data-height="265" data-theme-id="0" data-slug-hash="XpqRmq" data ...
- javascript 跑马灯
1.看了写跑马灯的教程案例,隔了段时间自己写了一个简单的跑马灯.将过程中遇到的问题特此记录下来 代码如下: <!DOCTYPE html> <html> <head> ...
- day24 模块03_re
休养生息 --模块03 1.正则表达式 2.在python中使用正则.re 一,正则表达式 (匹配字符串,主要是给字符串使用的) 1)元字符 . 除换行符之外 \w 数字,字母,下划线组成 \W ...
- python logging模块,升级print调试到logging。
简介: 我们在写python程序的时候,很多时候都有bug,都是自己写的,自己造的孽,又的时候报错又是一堆,不知道是那部分出错了. 我这初学者水平,就是打print,看哪部分执行了,哪部分没执行,由此 ...
- 【转载】非对称加密过程详解(基于RSA非对称加密算法实现)
1.非对称加密过程: 假如现实世界中存在A和B进行通讯,为了实现在非安全的通讯通道上实现信息的保密性.完整性.可用性(即信息安全的三个性质),A和B约定使用非对称加密通道进行通讯,具体 ...
- linux文件查看
查看目录 #查看文件 使用 ls 命令,加上参数 -l 表示查看详细信息,-a 表示查看包含隐藏文件在内的文件.也可使用通配符,*代表任意个字符,? 表示单个字符. $ ls ch*.doc #表 ...