God Water likes to eat meat, fish and chocolate very much, but unfortunately, the doctor tells him that some sequence of eating will make them poisonous.

Every hour, God Water will eat one kind of food among meat, fish and chocolate. If there are 3 continuous hours when he eats only one kind of food, he will be unhappy. Besides, if there are 3 continuous hours when he eats all kinds of those, with chocolate at the middle hour, it will be dangerous. Moreover, if there are 3 continuous hours when he eats meat or fish at the middle hour, with chocolate at other two hours, it will also be dangerous.

Now, you are the doctor. Can you find out how many different kinds of diet that can make God Water happy and safe during N hours? Two kinds of diet are considered the same if they share the same kind of food at the same hour. The answer may be very large, so you only need to give out the answer module 1000000007.

Input

The fist line puts an integer T that shows the number of test cases. (T≤1000)

Each of the next T lines contains an integer N that shows the number of hours. (1≤N≤1010)

Output

For each test case, output a single line containing the answer.

样例输入

3
3
4
15

样例输出

20
46
435170

题目来源

ACM-ICPC 2018 焦作赛区网络预赛

题意

God Water喜欢吃肉,鱼和巧克力。但是不能连着三小时吃同一种食物,如果连着三个小时吃的食物不一样,那么中间那个小时不能吃巧克力,如果中间那个小时没有吃巧克力,那么第一和第三小时都不能吃巧克力

设:(1)巧克力   (2)鱼   (3)肉

则不符合题意的排列有:111   222   333   213   312   121   131

求n个小时一共有多少种不同的吃食物的方法

思路

DP学长用暴力打出来了前二十项的表,然后得到了一个从第六项开始的递退公式:a[i]=2*a[i-1]-a[i-2]+3*a[i-3]+2*a[i-4]

然后听说BM模板可以直接求任意的线性递推式的任意项,就百度抄了dls的DM模板,学长们是用矩阵快速幂写的

//下面是代码

学长打表用的代码

#pragma GCC optimize ("O3")
#pragma GCC optimize ("O2")
#include <bits/stdc++.h>
#include <ext/rope>
using namespace std;
using namespace __gnu_cxx;
#define met(s) memset(s, 0, sizeof(s))
#define RR (LL + 1)
typedef long long LL;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<LL, LL> pii;
const int INF = 0x3f3f3f3f;
const ull TOP = (ull)1e17;
const LL MOD = 1e9 + 7;
const int MAXN = 1e5 + 20;
int a[MAXN];
int T, n, ans; void dfs(int x) {
if(x >= 3) {
if(a[x - 2] == 1) {
if(a[x - 1] == 1 && a[x] == 1) return ;
if(a[x - 1] == 0 && a[x] == 2) return ;
}
else if(a[x - 2] == 2) {
if(a[x - 1] == 2 && a[x] == 2) return ;
if(a[x - 1] == 0 && a[x] == 1) return ;
}
else {
if(a[x - 1] == 0 && a[x] == 0) return ;
if(a[x - 1] == 1 && a[x] == 0) return ;
if(a[x - 1] == 2 && a[x] == 0) return ;
}
}
if(x == n) {
ans++;
return ;
}
for(int i = 0; i < 3; ++i) {
a[x + 1] = i;
dfs(x + 1);
}
} int main() {
for(int i = 1; i <= 20; ++i) {
ans = 0;
n = i;
dfs(0);
printf("{%d,%d}\n", i, ans);
}
return 0;
}

AC代码

BM模板

#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <vector>
#include <string>
#include <map>
#include <set>
#include <cassert>
using namespace std;
#define rep(i,a,n) for (int i=a;i<n;i++)
#define per(i,a,n) for (int i=n-1;i>=a;i--)
#define pb push_back
#define mp make_pair
#define all(x) (x).begin(),(x).end()
#define fi first
#define se second
#define SZ(x) ((int)(x).size())
typedef vector<int> VI;
typedef long long ll;
typedef pair<int,int> PII;
const ll mod=1000000007;
ll powmod(ll a,ll b) {ll res=1;a%=mod; assert(b>=0);
for(;b;b>>=1){if(b&1)res=res*a%mod;a=a*a%mod;}return res;}
int _;
ll n;
namespace linear_seq {
const int N=10010;
ll res[N],base[N],_c[N],_md[N]; vector<int> Md;
void mul(ll *a,ll *b,int k) {
rep(i,0,k+k) _c[i]=0;
rep(i,0,k) if (a[i]) rep(j,0,k) _c[i+j]=(_c[i+j]+a[i]*b[j])%mod;
for (int i=k+k-1;i>=k;i--) if (_c[i])
rep(j,0,SZ(Md)) _c[i-k+Md[j]]=(_c[i-k+Md[j]]-_c[i]*_md[Md[j]])%mod;
rep(i,0,k) a[i]=_c[i];
}
int solve(ll n,VI a,VI b) {
ll ans=0,pnt=0;
int k=SZ(a);
assert(SZ(a)==SZ(b));
rep(i,0,k) _md[k-1-i]=-a[i];_md[k]=1;
Md.clear();
rep(i,0,k) if (_md[i]!=0) Md.push_back(i);
rep(i,0,k) res[i]=base[i]=0;
res[0]=1;
while ((1ll<<pnt)<=n) pnt++;
for (int p=pnt;p>=0;p--) {
mul(res,res,k);
if ((n>>p)&1) {
for (int i=k-1;i>=0;i--) res[i+1]=res[i];res[0]=0;
rep(j,0,SZ(Md)) res[Md[j]]=(res[Md[j]]-res[k]*_md[Md[j]])%mod;
}
}
rep(i,0,k) ans=(ans+res[i]*b[i])%mod;
if (ans<0) ans+=mod;
return ans;
}
VI BM(VI s) {
VI C(1,1),B(1,1);
int L=0,m=1,b=1;
rep(n,0,SZ(s)) {
ll d=0;
rep(i,0,L+1) d=(d+(ll)C[i]*s[n-i])%mod;
if (d==0) ++m;
else if (2*L<=n) {
VI T=C;
ll c=mod-d*powmod(b,mod-2)%mod;
while (SZ(C)<SZ(B)+m) C.pb(0);
rep(i,0,SZ(B)) C[i+m]=(C[i+m]+c*B[i])%mod;
L=n+1-L; B=T; b=d; m=1;
} else {
ll c=mod-d*powmod(b,mod-2)%mod;
while (SZ(C)<SZ(B)+m) C.pb(0);
rep(i,0,SZ(B)) C[i+m]=(C[i+m]+c*B[i])%mod;
++m;
}
}
return C;
}
int gao(VI a,ll n) {
VI c=BM(a);
c.erase(c.begin());
rep(i,0,SZ(c)) c[i]=(mod-c[i])%mod;
return solve(n,c,VI(a.begin(),a.begin()+SZ(c)));
}
}; int main() {
scanf("%d",&_);
while(_--)
{
vector<int>v;
v.push_back(3);
v.push_back(9);
v.push_back(20);
v.push_back(46);
v.push_back(106);
v.push_back(244);
v.push_back(560);
v.push_back(1286);
v.push_back(2956);
v.push_back(6794);
v.push_back(15610);
v.push_back(35866);
v.push_back(82416);
scanf("%lld",&n);
printf("%d\n",linear_seq::gao(v,n-1));
}
}

矩阵快速幂

#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const LL mod = 1000000007; struct mat {
LL mapp[4][4];
}; mat mat_pow(mat A, mat B) {
mat C;
memset(C.mapp, 0, sizeof(C.mapp));
for(int i = 0; i < 4; i++) {
for(int j = 0; j < 4; j++) {
for(int k = 0; k < 4; k++) {
C.mapp[i][k] = (C.mapp[i][k] + A.mapp[i][j] * B.mapp[j][k]) % mod;
}
}
}
return C;
} mat mat_mul(mat A, LL b) {
mat ans;
memset(ans.mapp, 0, sizeof(ans.mapp));
ans.mapp[0][0] = ans.mapp[1][1] = ans.mapp[2][2] = ans.mapp[3][3] = 1;
while(b) {
if(b & 1)
ans = mat_pow(ans, A);
A = mat_pow(A, A);
b >>= 1;
}
return ans;
} LL f[] = {3, 9, 20, 46, 106, 244, 560, 1286, 2956, 6794, 15610, 35866, 82416, 189384, 435170, 999936, 2297686, 5279714, 12131890};
int main() {
int T; LL n; mat A, ans;
ans.mapp[0][0] = 2, ans.mapp[0][1] = -1, ans.mapp[0][2] = 3, ans.mapp[0][3] = 2;
ans.mapp[1][0] = 1, ans.mapp[1][1] = 0, ans.mapp[1][2] = 0, ans.mapp[1][3] = 0;
ans.mapp[2][0] = 0, ans.mapp[2][1] = 1, ans.mapp[2][2] = 0, ans.mapp[2][3] = 0;
ans.mapp[3][0] = 0, ans.mapp[3][1] = 0, ans.mapp[3][2] = 1, ans.mapp[3][3] = 0;
memset(A.mapp, 0, sizeof(A.mapp));
A.mapp[0][0] = 106, A.mapp[1][0] = 46, A.mapp[2][0] = 20, A.mapp[3][0] = 9;
scanf("%d", &T);
while(T--) {
scanf("%lld", &n);
if(n <= 10) {
printf("%lld\n", f[n - 1]);
continue;
}
mat B = mat_mul(ans, n - 5);
B = mat_pow(B, A);
printf("%lld\n", B.mapp[0][0] % mod);
}
return 0;
}

ACM-ICPC 2018 焦作赛区网络预赛- L:Poor God Water(BM模板/矩阵快速幂)的更多相关文章

  1. ACM-ICPC 2018 焦作赛区网络预赛 L Poor God Water(矩阵快速幂,BM)

    https://nanti.jisuanke.com/t/31721 题意 有肉,鱼,巧克力三种食物,有几种禁忌,对于连续的三个食物:1.这三个食物不能都相同:2.若三种食物都有的情况,巧克力不能在中 ...

  2. ACM-ICPC 2018 焦作赛区网络预赛 L 题 Poor God Water

    God Water likes to eat meat, fish and chocolate very much, but unfortunately, the doctor tells him t ...

  3. ACM-ICPC 2018 焦作赛区网络预赛 L:Poor God Water(矩阵快速幂)

    God Water likes to eat meat, fish and chocolate very much, but unfortunately, the doctor tells him t ...

  4. ACM-ICPC 2018 焦作赛区网络预赛- G:Give Candies(费马小定理,快速幂)

    There are N children in kindergarten. Miss Li bought them NNN candies. To make the process more inte ...

  5. ACM-ICPC 2018 焦作赛区网络预赛

    这场打得还是比较爽的,但是队友差一点就再过一题,还是难受啊. 每天都有新的难过 A. Magic Mirror Jessie has a magic mirror. Every morning she ...

  6. ACM-ICPC 2018 焦作赛区网络预赛J题 Participate in E-sports

    Jessie and Justin want to participate in e-sports. E-sports contain many games, but they don't know ...

  7. ACM-ICPC 2018 焦作赛区网络预赛 K题 Transport Ship

    There are NN different kinds of transport ships on the port. The i^{th}ith kind of ship can carry th ...

  8. ACM-ICPC 2018 焦作赛区网络预赛 I题 Save the Room

    Bob is a sorcerer. He lives in a cuboid room which has a length of AA, a width of BB and a height of ...

  9. ACM-ICPC 2018 焦作赛区网络预赛 H题 String and Times(SAM)

    Now you have a string consists of uppercase letters, two integers AA and BB. We call a substring won ...

随机推荐

  1. 运行B/s项目时,出现尝试访问类型与数组不兼容元素问题?

    1.问题描述 运行B/s项目时,浏览器出现应用程序中服务器错误(尝试访问类型与数组不兼容的元素) 2.问题原因 本人是项目引用的dll版本不一致问题,引用的System.Web.Mvc版本是4.0.0 ...

  2. MySql查询最近一个月,一周,一天

    最近一个月 SELECT * FROM table WHERE DATE_SUB(CURDATE(), INTERVAL 1 MONTH) <= date(time); 本月.当前月 SELEC ...

  3. 逆袭之旅DAY17.东软实训.Oracle.存储过程

    2018-07-13 09:08:36

  4. POST提交表单时EnType设置问题

    POST提交表单时EnType设置问题 首先知道enctype这个属性管理的是表单的MIME编码.共有三个值可选: 1.application/x-www-form-urlencoded 2.mult ...

  5. http协议与浏览器缓存

    http协议与浏览器缓存 F5刷新与在地址栏回车的区别 链接

  6. flask-admin有用的例子

    flask-admin主页: https://github.com/flask-admin/flask-admin flask-admin克隆地址: https://github.com/flask- ...

  7. useful links about machine learning

    机器学习(Machine Learning)&深度学习(Deep Learning)资料(Chapter 1) 机器学习(Machine Learning)&深度学习(Deep Lea ...

  8. 【转】Mac OS X Terminal 101:终端使用初级教程

    最近学习苹果认证的<Mac OS X Support Essentials>教程,看到 Command Line 一节有很多实用的知识,下面选取一部分翻译 + 笔记,整理成此文. 你可以整 ...

  9. Java面向对象的三大特性之一 多态

    多态: 子类重写父类方法 1)位置:子类和父类中有同名的方法 2)方法名相同,返回类型和修饰符相同,参数列表相同       方法体不同 多态的优势和应用场合 多态:同一个引用类型,使用不同的实例而执 ...

  10. C/C++知识补充 (1)

    ● C++的圆括号运算符() 下列关于圆括号运算符的功能说法不正确的是(C) . A. 可用于强制类型转换 B 可用于类型构造 C 可用于类型声明 D 可用于函数调用 对大部分可重载的运算符来说,它既 ...