ACM-ICPC 2018 焦作赛区网络预赛- L:Poor God Water(BM模板/矩阵快速幂)
God Water likes to eat meat, fish and chocolate very much, but unfortunately, the doctor tells him that some sequence of eating will make them poisonous.
Every hour, God Water will eat one kind of food among meat, fish and chocolate. If there are 3 continuous hours when he eats only one kind of food, he will be unhappy. Besides, if there are 3 continuous hours when he eats all kinds of those, with chocolate at the middle hour, it will be dangerous. Moreover, if there are 3 continuous hours when he eats meat or fish at the middle hour, with chocolate at other two hours, it will also be dangerous.
Now, you are the doctor. Can you find out how many different kinds of diet that can make God Water happy and safe during N hours? Two kinds of diet are considered the same if they share the same kind of food at the same hour. The answer may be very large, so you only need to give out the answer module 1000000007.
Input
The fist line puts an integer T that shows the number of test cases. (T≤1000)
Each of the next T lines contains an integer N that shows the number of hours. (1≤N≤1010)
Output
For each test case, output a single line containing the answer.
样例输入
3
3
4
15
样例输出
20
46
435170
题目来源
题意
God Water喜欢吃肉,鱼和巧克力。但是不能连着三小时吃同一种食物,如果连着三个小时吃的食物不一样,那么中间那个小时不能吃巧克力,如果中间那个小时没有吃巧克力,那么第一和第三小时都不能吃巧克力
设:(1)巧克力 (2)鱼 (3)肉
则不符合题意的排列有:111 222 333 213 312 121 131
求n个小时一共有多少种不同的吃食物的方法
思路
DP学长用暴力打出来了前二十项的表,然后得到了一个从第六项开始的递退公式:a[i]=2*a[i-1]-a[i-2]+3*a[i-3]+2*a[i-4]
然后听说BM模板可以直接求任意的线性递推式的任意项,就百度抄了dls的DM模板,学长们是用矩阵快速幂写的
//下面是代码
学长打表用的代码
#pragma GCC optimize ("O3")
#pragma GCC optimize ("O2")
#include <bits/stdc++.h>
#include <ext/rope>
using namespace std;
using namespace __gnu_cxx;
#define met(s) memset(s, 0, sizeof(s))
#define RR (LL + 1)
typedef long long LL;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<LL, LL> pii;
const int INF = 0x3f3f3f3f;
const ull TOP = (ull)1e17;
const LL MOD = 1e9 + 7;
const int MAXN = 1e5 + 20;
int a[MAXN];
int T, n, ans;
void dfs(int x) {
if(x >= 3) {
if(a[x - 2] == 1) {
if(a[x - 1] == 1 && a[x] == 1) return ;
if(a[x - 1] == 0 && a[x] == 2) return ;
}
else if(a[x - 2] == 2) {
if(a[x - 1] == 2 && a[x] == 2) return ;
if(a[x - 1] == 0 && a[x] == 1) return ;
}
else {
if(a[x - 1] == 0 && a[x] == 0) return ;
if(a[x - 1] == 1 && a[x] == 0) return ;
if(a[x - 1] == 2 && a[x] == 0) return ;
}
}
if(x == n) {
ans++;
return ;
}
for(int i = 0; i < 3; ++i) {
a[x + 1] = i;
dfs(x + 1);
}
}
int main() {
for(int i = 1; i <= 20; ++i) {
ans = 0;
n = i;
dfs(0);
printf("{%d,%d}\n", i, ans);
}
return 0;
}
AC代码
BM模板
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <vector>
#include <string>
#include <map>
#include <set>
#include <cassert>
using namespace std;
#define rep(i,a,n) for (int i=a;i<n;i++)
#define per(i,a,n) for (int i=n-1;i>=a;i--)
#define pb push_back
#define mp make_pair
#define all(x) (x).begin(),(x).end()
#define fi first
#define se second
#define SZ(x) ((int)(x).size())
typedef vector<int> VI;
typedef long long ll;
typedef pair<int,int> PII;
const ll mod=1000000007;
ll powmod(ll a,ll b) {ll res=1;a%=mod; assert(b>=0);
for(;b;b>>=1){if(b&1)res=res*a%mod;a=a*a%mod;}return res;}
int _;
ll n;
namespace linear_seq {
const int N=10010;
ll res[N],base[N],_c[N],_md[N];
vector<int> Md;
void mul(ll *a,ll *b,int k) {
rep(i,0,k+k) _c[i]=0;
rep(i,0,k) if (a[i]) rep(j,0,k) _c[i+j]=(_c[i+j]+a[i]*b[j])%mod;
for (int i=k+k-1;i>=k;i--) if (_c[i])
rep(j,0,SZ(Md)) _c[i-k+Md[j]]=(_c[i-k+Md[j]]-_c[i]*_md[Md[j]])%mod;
rep(i,0,k) a[i]=_c[i];
}
int solve(ll n,VI a,VI b) {
ll ans=0,pnt=0;
int k=SZ(a);
assert(SZ(a)==SZ(b));
rep(i,0,k) _md[k-1-i]=-a[i];_md[k]=1;
Md.clear();
rep(i,0,k) if (_md[i]!=0) Md.push_back(i);
rep(i,0,k) res[i]=base[i]=0;
res[0]=1;
while ((1ll<<pnt)<=n) pnt++;
for (int p=pnt;p>=0;p--) {
mul(res,res,k);
if ((n>>p)&1) {
for (int i=k-1;i>=0;i--) res[i+1]=res[i];res[0]=0;
rep(j,0,SZ(Md)) res[Md[j]]=(res[Md[j]]-res[k]*_md[Md[j]])%mod;
}
}
rep(i,0,k) ans=(ans+res[i]*b[i])%mod;
if (ans<0) ans+=mod;
return ans;
}
VI BM(VI s) {
VI C(1,1),B(1,1);
int L=0,m=1,b=1;
rep(n,0,SZ(s)) {
ll d=0;
rep(i,0,L+1) d=(d+(ll)C[i]*s[n-i])%mod;
if (d==0) ++m;
else if (2*L<=n) {
VI T=C;
ll c=mod-d*powmod(b,mod-2)%mod;
while (SZ(C)<SZ(B)+m) C.pb(0);
rep(i,0,SZ(B)) C[i+m]=(C[i+m]+c*B[i])%mod;
L=n+1-L; B=T; b=d; m=1;
} else {
ll c=mod-d*powmod(b,mod-2)%mod;
while (SZ(C)<SZ(B)+m) C.pb(0);
rep(i,0,SZ(B)) C[i+m]=(C[i+m]+c*B[i])%mod;
++m;
}
}
return C;
}
int gao(VI a,ll n) {
VI c=BM(a);
c.erase(c.begin());
rep(i,0,SZ(c)) c[i]=(mod-c[i])%mod;
return solve(n,c,VI(a.begin(),a.begin()+SZ(c)));
}
};
int main() {
scanf("%d",&_);
while(_--)
{
vector<int>v;
v.push_back(3);
v.push_back(9);
v.push_back(20);
v.push_back(46);
v.push_back(106);
v.push_back(244);
v.push_back(560);
v.push_back(1286);
v.push_back(2956);
v.push_back(6794);
v.push_back(15610);
v.push_back(35866);
v.push_back(82416);
scanf("%lld",&n);
printf("%d\n",linear_seq::gao(v,n-1));
}
}
矩阵快速幂
#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const LL mod = 1000000007;
struct mat {
LL mapp[4][4];
};
mat mat_pow(mat A, mat B) {
mat C;
memset(C.mapp, 0, sizeof(C.mapp));
for(int i = 0; i < 4; i++) {
for(int j = 0; j < 4; j++) {
for(int k = 0; k < 4; k++) {
C.mapp[i][k] = (C.mapp[i][k] + A.mapp[i][j] * B.mapp[j][k]) % mod;
}
}
}
return C;
}
mat mat_mul(mat A, LL b) {
mat ans;
memset(ans.mapp, 0, sizeof(ans.mapp));
ans.mapp[0][0] = ans.mapp[1][1] = ans.mapp[2][2] = ans.mapp[3][3] = 1;
while(b) {
if(b & 1)
ans = mat_pow(ans, A);
A = mat_pow(A, A);
b >>= 1;
}
return ans;
}
LL f[] = {3, 9, 20, 46, 106, 244, 560, 1286, 2956, 6794, 15610, 35866, 82416, 189384, 435170, 999936, 2297686, 5279714, 12131890};
int main() {
int T; LL n; mat A, ans;
ans.mapp[0][0] = 2, ans.mapp[0][1] = -1, ans.mapp[0][2] = 3, ans.mapp[0][3] = 2;
ans.mapp[1][0] = 1, ans.mapp[1][1] = 0, ans.mapp[1][2] = 0, ans.mapp[1][3] = 0;
ans.mapp[2][0] = 0, ans.mapp[2][1] = 1, ans.mapp[2][2] = 0, ans.mapp[2][3] = 0;
ans.mapp[3][0] = 0, ans.mapp[3][1] = 0, ans.mapp[3][2] = 1, ans.mapp[3][3] = 0;
memset(A.mapp, 0, sizeof(A.mapp));
A.mapp[0][0] = 106, A.mapp[1][0] = 46, A.mapp[2][0] = 20, A.mapp[3][0] = 9;
scanf("%d", &T);
while(T--) {
scanf("%lld", &n);
if(n <= 10) {
printf("%lld\n", f[n - 1]);
continue;
}
mat B = mat_mul(ans, n - 5);
B = mat_pow(B, A);
printf("%lld\n", B.mapp[0][0] % mod);
}
return 0;
}
ACM-ICPC 2018 焦作赛区网络预赛- L:Poor God Water(BM模板/矩阵快速幂)的更多相关文章
- ACM-ICPC 2018 焦作赛区网络预赛 L Poor God Water(矩阵快速幂,BM)
https://nanti.jisuanke.com/t/31721 题意 有肉,鱼,巧克力三种食物,有几种禁忌,对于连续的三个食物:1.这三个食物不能都相同:2.若三种食物都有的情况,巧克力不能在中 ...
- ACM-ICPC 2018 焦作赛区网络预赛 L 题 Poor God Water
God Water likes to eat meat, fish and chocolate very much, but unfortunately, the doctor tells him t ...
- ACM-ICPC 2018 焦作赛区网络预赛 L:Poor God Water(矩阵快速幂)
God Water likes to eat meat, fish and chocolate very much, but unfortunately, the doctor tells him t ...
- ACM-ICPC 2018 焦作赛区网络预赛- G:Give Candies(费马小定理,快速幂)
There are N children in kindergarten. Miss Li bought them NNN candies. To make the process more inte ...
- ACM-ICPC 2018 焦作赛区网络预赛
这场打得还是比较爽的,但是队友差一点就再过一题,还是难受啊. 每天都有新的难过 A. Magic Mirror Jessie has a magic mirror. Every morning she ...
- ACM-ICPC 2018 焦作赛区网络预赛J题 Participate in E-sports
Jessie and Justin want to participate in e-sports. E-sports contain many games, but they don't know ...
- ACM-ICPC 2018 焦作赛区网络预赛 K题 Transport Ship
There are NN different kinds of transport ships on the port. The i^{th}ith kind of ship can carry th ...
- ACM-ICPC 2018 焦作赛区网络预赛 I题 Save the Room
Bob is a sorcerer. He lives in a cuboid room which has a length of AA, a width of BB and a height of ...
- ACM-ICPC 2018 焦作赛区网络预赛 H题 String and Times(SAM)
Now you have a string consists of uppercase letters, two integers AA and BB. We call a substring won ...
随机推荐
- Android 常用动画
一.动画类型 Android的animation由四种类型组成:alpha.scale.translate.rotate XML配置文件中 alpha :渐变透明度动画效果 scale :渐变尺寸伸缩 ...
- commonJS 和 ES6 模块化的不同
commonjs 导出 module.exports={ add:function(){ console.log('add测试') } } 导入 var add=require('./add.js') ...
- cpu-z for ubuntu 12.04 64bit : cpu-g
wget https://launchpad.net/~phantomas/+archive/ppa/+files/cpu-g_0.9.0_amd64.deb sudo dpkg -i cpu-g*. ...
- ci框架多语言切换
1.多语言切换首先配置config文件默认语言 2.创建自己的语言包:language chinese english目录下的语言包文件名必须以 xx_lang.php 可根据自己的需求创建数组: ...
- js中 offset /client /scroll总结
offset家族(只能读取,不能操作): offsetLeft:元素的边框的外边缘距离与已定位的父容器(offsetparent)的左边距离(就是子元素左边框到父元素左边框的距离). offsetTo ...
- Java判断对象是否为NULL
Java使用反射判断对象是否为NULL 判断Java对象是否为null可以有两层含义: 第一层: 直接使用 object == null 去判断,对象为null的时候返回true,不为null的时候 ...
- JXL生成Excel,并提供下载(1:生成Excel)
public String exportExcel(long id) { String preeReviewName = "文件名"; String filePath = 路径名; ...
- Java:<获取>、<删除>指定文件夹及里面所有文件
工具类代码如下: 一.获取 public Class Test{ //定义全局变量,存放所有文件夹下的文档 List<String> fileList ; public List<S ...
- 深入理解java虚拟机---lanmbda表达式简介(三)
1.lanmbda表达式使用 lanbmda表达式的作用: A: 取代内部类 B;增加对集合的操作,从而增强其性能
- SQL-13 从titles表获取按照title进行分组,每组个数大于等于2,给出title以及对应的数目t。
题目描述 从titles表获取按照title进行分组,每组个数大于等于2,给出title以及对应的数目t.CREATE TABLE IF NOT EXISTS "titles" ( ...