Hash 索引结构的特殊性,其检索效率非常高,索引的检索可以一次定位,不像B-Tree 索引需要从根节点到枝节点,最后才能访问到页节点这样多次的IO访问,所以 Hash 索引的查询效率要远高于 B-Tree 索引。

可能很多人又有疑问了,既然 Hash 索引的效率要比 B-Tree 高很多,为什么大家不都用 Hash 索引而还要使用 B-Tree 索引呢?任何事物都是有两面性的,Hash 索引也一样,虽然 Hash 索引效率高,但是 Hash 索引本身由于其特殊性也带来了很多限制和弊端,主要有以下这些。

(1)Hash 索引仅仅能满足"=","IN"和"<=>"查询,不能使用范围查询。

由于 Hash 索引比较的是进行 Hash 运算之后的 Hash 值,所以它只能用于等值的过滤,不能用于基于范围的过滤,因为经过相应的 Hash 算法处理之后的 Hash 值的大小关系,并不能保证和Hash运算前完全一样。

(2)Hash 索引无法被用来避免数据的排序操作。

由于 Hash 索引中存放的是经过 Hash 计算之后的 Hash 值,而且Hash值的大小关系并不一定和 Hash 运算前的键值完全一样,所以数据库无法利用索引的数据来避免任何排序运算;

(3)Hash 索引不能利用部分索引键查询。

对于组合索引,Hash 索引在计算 Hash 值的时候是组合索引键合并后再一起计算 Hash 值,而不是单独计算 Hash 值,所以通过组合索引的前面一个或几个索引键进行查询的时候,Hash 索引也无法被利用。

(4)Hash 索引在任何时候都不能避免表扫描。

前面已经知道,Hash 索引是将索引键通过 Hash 运算之后,将 Hash运算结果的 Hash 值和所对应的行指针信息存放于一个 Hash 表中,由于不同索引键存在相同 Hash 值,所以即使取满足某个 Hash 键值的数据的记录条数,也无法从 Hash 索引中直接完成查询,还是要通过访问表中的实际数据进行相应的比较,并得到相应的结果。

(5)Hash 索引遇到大量Hash值相等的情况后性能并不一定就会比B-Tree索引高。

对于选择性比较低的索引键,如果创建 Hash 索引,那么将会存在大量记录指针信息存于同一个 Hash 值相关联。这样要定位某一条记录时就会非常麻烦,会浪费多次表数据的访问,而造成整体性能低下

 
 
2. B-Tree索引

B-Tree 索引是 MySQL 数据库中使用最为频繁的索引类型,除了 Archive 存储引擎之外的其他所有的存储引擎都支持 B-Tree 索引。不仅仅在 MySQL 中是如此,实际上在其他的很多数据库管理系统中B-Tree 索引也同样是作为最主要的索引类型,这主要是因为 B-Tree 索引的存储结构在数据库的数据检 索中有非常优异的表现。 
      一般来说, MySQL 中的 B-Tree 索引的物理文件大多都是以 Balance Tree 的结构来存储的,也就是所有实际需要的数据都存放于 Tree 的 Leaf Node ,而且到任何一个 Leaf Node 的最短路径的长度都是完全相同的,所以我们大家都称之为 B-Tree 索引当然,可能各种数据库(或 MySQL 的各种存储引擎)在存放自己的 B-Tree 索引的时候会对存储结构稍作改造。如 Innodb 存储引擎的 B-Tree 索引实际使用的存储结构实际上是 B+Tree ,也就是在 B-Tree 数据结构的基础上做了很小的改造,在每一个 
Leaf Node 上面出了存放索引键的相关信息之外,还存储了指向与该 Leaf Node 相邻的后一个 LeafNode 的指针信息,这主要是为了加快检索多个相邻 Leaf Node 的效率考虑。 
      在 Innodb 存储引擎中,存在两种不同形式的索引,一种是 Cluster 形式的主键索引( Primary Key ),另外一种则是和其他存储引擎(如 MyISAM 存储引擎)存放形式基本相同的普通 B-Tree 索引,这种索引在 Innodb 存储引擎中被称为 Secondary Index 。下面我们通过图示来针对这两种索引的存放 
形式做一个比较。

图示中左边为 Clustered 形式存放的 Primary Key ,右侧则为普通的 B-Tree 索引。两种 Root Node 和 Branch Nodes 方面都还是完全一样的。而 Leaf Nodes 就出现差异了。在 Prim中, Leaf Nodes 存放的是表的实际数据,不仅仅包括主键字段的数据,还包括其他字段的数据据以主键值有序的排列。而 Secondary Index 则和其他普通的 B-Tree 索引没有太大的差异,Leaf Nodes 出了存放索引键 的相关信息外,还存放了 Innodb 的主键值。

所以,在 Innodb 中如果通过主键来访问数据效率是非常高的,而如果是通过 Secondary Index 来访问数据的话, Innodb 首先通过 Secondary Index 的相关信息,通过相应的索引键检索到 Leaf Node之后,需要再通过 Leaf Node 中存放的主键值再通过主键索引来获取相应的数据行。MyISAM 存储引擎的主键索引和非主键索引差别很小,只不过是主键索引的索引键是一个唯一且非空 的键而已。而且 MyISAM 存储引擎的索引和 Innodb 的 Secondary Index 的存储结构也基本相同,主要的区别只是 MyISAM 存储引擎在 Leaf Nodes 上面出了存放索引键信息之外,再存放能直接定位到 MyISAM 数据文件中相应的数据行的信息(如 Row Number ),但并不会存放主键的键值信息

mysql索引hash索引和b-tree索引的区别的更多相关文章

  1. mysql 的索引hash和b+tree 区别

    索引hash相当于数组,键值对组合,对于id = 6或者status= 2这样条件查询,但是对于id>12等这样,用btree索引最好.

  2. 深入理解Mysql索引的底层数据结构 B+ Tree (2)

    sql查询 explain的详细用法 操作时间:寻道时间+旋转时间 引入索引:采用二叉树结构 把第二列做为索引生成二叉树结构,此时查询89 只做了两次io操作 但是mysql 为什么不用二叉树作为底层 ...

  3. Mysql的B+ Tree索引

    为什么要使用索引? 最简单的方式实现数据查询:全表扫描,即将整张表的数据全部或者分批次加载进内存,由于存储的最小单位是块或者页,它们是由多行数据组成,然后逐块逐块或者逐页逐页地查找,这样查找的速度非常 ...

  4. MYSQL之B+TREE索引原理

    1.什么是索引? 索引:加速查询的数据结构. 2.索引常见数据结构 顺序查找: 最基本的查询算法-复杂度O(n),大数据量此算法效率糟糕. 二叉树查找:(binary tree search): O( ...

  5. 【MySQL】索引的本质(B+Tree)解析

    索引是帮助MySQL高效获取数据的排好序的数据结构. 索引数据结构 二叉树 红黑树 Hash表 B-Tree MySQL所使用为B+Tree (B-Tree变种) 非叶子节点不存储data,只存储索引 ...

  6. 图解MySQL索引(二)—为什么使用B+Tree

    失踪人口回归,近期换工作一波三折,耽误了不少时间,从今开始每周更新~ 索引是一种支持快速查询的数据结构,同时索引优化也是后端工程师的必会知识点.各个公司都有所谓的MySQL"军规" ...

  7. mysql B+Tree索引

    原文地址:http://blog.codinglabs.org/articles/theory-of-mysql-index.html 数据结构及算法基础 索引的本质 MySQL官方对索引的定义为:索 ...

  8. MYSQL的B+Tree索引树高度如何计算

    前一段被问到一个平时没有关注到有关于MYSQL索引相关的问题点,被问到一个表有3000万记录,假如有一列占8位字节的字段,根据这一列建索引的话索引树的高度是多少? 这一问当时就被问蒙了,平时这也只关注 ...

  9. Mysql B-Tree和B+Tree索引

    Mysql B-Tree和B+树索引 Mysql加快数据查找使用B-Tree数据结构存储索引数据,InnoDB存储引擎实际使用B+Tree.下面首先介绍下B-Tree和B+Tree的区别: 一.B树和 ...

随机推荐

  1. hdu1573 X问题【中国剩余定理】

    <题目链接> X问题 Problem Description 求在小于等于N的正整数中有多少个X满足:X mod a[0] = b[0], X mod a[1] = b[1], X mod ...

  2. P1590 失踪的7

    P1590 失踪的7进制转换的题目,如果把一个10进制的数当成9进制,相当于没有9这个数字,题目失踪了7,但是无所谓.如果当前的大于7,它就跳过了一个数字,向左移动1位. #include<io ...

  3. 8,EasyNetQ-多态发布和订阅

    您可以订阅一个接口,然后发布该接口的实现. 我们来看一个例子. 我有一个接口IAnimal和两个实现猫和狗: public interface IAnimal { string Name { get; ...

  4. Android-认识Bitmap

    Android-认识Bitmap 学习自 Android开发艺术探索 例行废话 在Android的各种APP中都被离不开各种各样的图片,有的图片很大,有的图片很小不管这样图片都是一种很吃内存的资源,而 ...

  5. SQL Server中查找包含某个文本的存储过程

    SELECT name,text from sysobjects o,syscomments s where o.id=s.id and text LIKE '%text%' and o.xtype= ...

  6. BZOJ.5404.party(树链剖分 bitset Hall定理)

    题目链接 只有指向父节点的单向道路,所以c个人肯定在LCA处汇合.那么就成了有c条到LCA的路径,求最大的x,满足能从c条路径中各选出x个数,且它们不同. 先要维护一条路径的数的种类数,可以树剖+每条 ...

  7. Python3内置函数——reversed() = 翻转我的世界

    认识reversed单词 reversed 英[rɪ'vɜ:st] 美[rɪ'vɜst] adj. 颠倒的:相反的:(判决等)撤销的 v. 颠倒(reverse的过去式和过去分词):翻转 help(r ...

  8. [NOIp2015提高组]跳石头

    OJ题号:洛谷2678 思路:贪心+二分. 从前往后扫,一旦这个石头到上一个选的石头的距离小于二分的值就把这块石头移走. #include<cstdio> #include<queu ...

  9. node+koa2 向页面传值方式

    1. router.post('/form',async(ctx,next)=>{ const form = ctx.request.body; console.log('用户名:'+form. ...

  10. 以为是tomcat出现using问题,怎么改都改不好终于找到原因

    我也是醉了被自己打败了,以上问题困扰我半天是时间,百度好久都没有解决.应该打开tomcat的bin下的starup.bat结果打开了tomcat-src中的了,怪不得死活出现不了startup