BZOJ 3585 mex
题目已经没有了
思路:
莫队+分块
首先有一个结论:所有的答案都在0到n之间,用反正法就能证明,所以所有大于n的数都可以看成n
离线,对询问区间进行莫队,再对答案的范围0到n进行分块
复杂度(n+2*m)√n
代码:
#include<bits/stdc++.h>
using namespace std;
#define fi first
#define se second
#define pi acos(-1.0)
#define LL long long
//#define mp make_pair
#define pb push_back
#define ls rt<<1, l, m
#define rs rt<<1|1, m+1, r
#define ULL unsigned LL
#define pll pair<LL, LL>
#define pii pair<int, int>
#define mem(a, b) memset(a, b, sizeof(a))
#define fio ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
#define fopen freopen("in.txt", "r", stdin);freopen("out.txt", "w", stout);
//head const int N = 2e5 + ;
int a[N], cnt[N], bl[N], ans[N], l[], r[], block[], blo, n;
struct node {
int l, r, bl, id;
bool operator < (const node & t) const {
if(bl == t.bl) return r < t.r;
else bl < t.bl;
}
}Q[N];
void add(int x) {
if(!cnt[x]) block[bl[x]]++;
cnt[x] ++;
}
void del(int x) {
cnt[x]--;
if(!cnt[x]) block[bl[x]]--;
}
int query() {
int i;
for (i = bl[]; i <= bl[n]; i++) if(block[i] != r[i] - l[i] + ) break;
for (int j = l[i]; j <= r[i]; j++) if(!cnt[j]) return j;
}
int main() {
int m;
while(~scanf("%d%d", &n, &m)) {
for (int i = ; i <= n; i++) {
scanf("%d", &a[i]);
if(a[i] >= n) a[i] = n;
}
blo = sqrt(n+);
for (int i = ; i <= n; i++) bl[i] = i/blo + ;
for (int i = bl[]; i <= bl[n]; i++) {
l[i] = (i-)*blo;
r[i] = min(i*blo-, n);
}
blo = sqrt(n);
for (int i = ; i <= m; i++) {
scanf("%d%d", &Q[i].l, &Q[i].r);
Q[i].bl = (Q[i].l - )/blo + ;
Q[i].id = i;
}
sort(Q+, Q++m);
mem(cnt, );
mem(block, );
int l = , r = ;
for (int i = ; i <= m; i++) {
while(r < Q[i].r) r++, add(a[r]);
while(r > Q[i].r) del(a[r]), r--;
while(l < Q[i].l) del(a[l]), l++;
while(l > Q[i].l) l--, add(a[l]);
ans[Q[i].id] = query();
}
for (int i = ; i <= m; i++) printf("%d\n", ans[i]);
}
return ;
}
BZOJ 3585 mex的更多相关文章
- [BZOJ 3585] mex 【莫队+分块】
题目链接:BZOJ - 3585 题目分析 区间mex,即区间中没有出现的最小自然数. 那么我们使用一种莫队+分块的做法,使用莫队维护当前区间的每个数字的出现次数. 然后求mex用分块,将权值分块(显 ...
- BZOJ 3585: mex( 离线 + 线段树 )
离线, 询问排序. 先处理出1~i的答案, 这样可以回答左端点为1的询问.完成后就用seq(1)将1到它下一次出现的位置前更新. 不断这样转移就OK了 ------------------------ ...
- BZOJ 3585: mex [主席树]
3585: mex Time Limit: 20 Sec Memory Limit: 128 MBSubmit: 787 Solved: 422[Submit][Status][Discuss] ...
- bzoj 3585: mex && 3339: Rmq Problem -- 主席树
3585: mex Time Limit: 20 Sec Memory Limit: 128 MB Description 有一个长度为n的数组{a1,a2,...,an}.m次询问,每次询问一个区 ...
- bzoj 3585 mex - 线段树 - 分块 - 莫队算法
Description 有一个长度为n的数组{a1,a2,...,an}.m次询问,每次询问一个区间内最小没有出现过的自然数. Input 第一行n,m. 第二行为n个数. 从第三行开始,每行一个询问 ...
- Bzoj 3339: Rmq Problem && Bzoj 3585: mex 莫队,树状数组,二分
3339: Rmq Problem Time Limit: 20 Sec Memory Limit: 128 MBSubmit: 833 Solved: 397[Submit][Status][D ...
- 主席树||可持久化线段树+离散化 || 莫队+分块 ||BZOJ 3585: mex || Luogu P4137 Rmq Problem / mex
题面:Rmq Problem / mex 题解: 先离散化,然后插一堆空白,大体就是如果(对于以a.data<b.data排序后的A)A[i-1].data+1!=A[i].data,则插一个空 ...
- BZOJ.3585.mex(线段树)
题目链接 题意:多次求区间\(mex\). 考虑\([1,i]\)的\(mex[i]\),显然是单调的 而对于\([l,r]\)与\([l+1,r]\),如果\(nxt[a[l]]>r\),那么 ...
- BZOJ 3585: mex(分块+莫队)
传送门 解题思路 首先直接莫队是能被卡的,时间复杂度不对.就考虑按照值域先进行分块再进行莫队,然后统计答案的时候就暴力扫所有的块,直到一个块内元素不满,再暴力扫这个块就行了,时间复杂度O(msqrt( ...
随机推荐
- P3809 【模板】后缀排序
P3809 [模板]后缀排序 从这学的 后缀数组sa[i]就表示排名为i的后缀的起始位置 x[i]是第i个元素的第一关键字 y[i]表示第二关键字排名为i的数,在第一关键字中的位置 #include& ...
- oracle 11g AUTO_SAMPLE_SIZE动态采用工作机制
Note that if you're interested in learning about Oracle Database 12c, there's an updated version of ...
- centos6下jbd2进程占用大量IO处理
刚在尝试重现一个bug时,好像在killed mysql一段时间之后,io一直很高,如下: 12:40:01 PM CPU %user %nice %system %iowait %steal %id ...
- 【4Opencv】如何识别出轮廓准确的长和宽
问题来源: 实际项目中,需要给出识别轮廓的长度和宽度. 初步分析: 轮廓分析的例程为: int main( int argc, char** argv ){ //read the image ...
- CEF3开发者系列之Cookies管理和共享
涉及网页登录相关的技术,Cookies肯定是忽略不了的.由于项目的需要,要做一个双核的产品.双核间切换会涉及到登录状态的问题,共享Cookies是一个很好的方案.既然涉及到共享cookies,那么读取 ...
- How to check if one path is a child of another path?
How to check if one path is a child of another path? Unfortunately it's not as simple as StartsWith. ...
- 【问题解决:Mysql操作容量限制问题】Error updating database. Cause: com.mysql.jdbc.PacketTooBigException: Packet for query is too large (1082 > 1024)
在做查询数据库操作时,报了以上错误,还有out of memery heap hacp ,原因是mysql的max_allowed_packet设置过小引起的,我一开始设置的是1M,后来改为了20M ...
- P4980 【模板】Polya定理
思路 polya定理的模板题,但是还要加一些优化 题目的答案就是 \[ \frac{\sum_{i=1}^n n^{gcd(i,n)}}{n} \] 考虑上方的式子怎么求 因为\(gcd(i,n)\) ...
- Mixins 混入选项操作
Mixins一般有两种用途: 1.在你已经写好了构造器后,需要增加方法或者临时的活动时使用的方法,这时用混入会减少源代码的污染. 2.很多地方都会用到的公用方法,用混入的方法可以减少代码量,实现代码重 ...
- 定义统一的返回格式(controller)
一:单独创建一个类来表示返回结果 package com.jk51.commons.dto; /** * Created by Administrator on 2017/6/13. */ publi ...