在分布式应用中,应该来说使用到hash最多的地方就是rpc负载均衡和分库分表,通常对于正式意义上的分布式应用来说,扩容和收缩是一个半自动化的过程,在此期间,应用基本上是可用的,所以不能发生大规模动荡的意外,为了最小化潜在的影响,一致性hash算法就扮演了极为重要的角色。

consistent hashing 算法早在 1997 年就在论文 Consistent hashing and random trees 中被提出,目前在cache 系统中应用越来越广泛;

1 基本场景

比如你有 N 个 cache 服务器(后面简称 cache ),那么如何将一个对象 object 映射到 N 个 cache 上呢,你很可能会采用类似下面的通用方法计算 object 的 hash 值,然后均匀的映射到到 N 个 cache ;

hash(object)%N

一切都运行正常,再考虑如下的两种情况;

1 一个 cache 服务器 m down 掉了(在实际应用中必须要考虑这种情况),这样所有映射到 cache m 的对象都会失效,怎么办,需要把 cache m 从 cache 中移除,这时候 cache 是 N-1 台,映射公式变成了 hash(object)%(N-1) ;

2 由于访问加重,需要添加 cache ,这时候 cache 是 N+1 台,映射公式变成了 hash(object)%(N+1) ;

1 和 2 意味着什么?这意味着突然之间几乎所有的 cache 都失效了。对于服务器而言,这是一场灾难,洪水般的访问都会直接冲向后台服务器;

再来考虑第三个问题,由于硬件能力越来越强,你可能想让后面添加的节点多做点活,显然上面的 hash 算法也做不到。

有什么方法可以改变这个状况呢,这就是 consistent hashing...

2 hash 算法和单调性

   Hash 算法的一个衡量指标是单调性( Monotonicity ),定义如下:

  单调性是指如果已经有一些内容通过哈希分派到了相应的缓冲中,又有新的缓冲加入到系统中。哈希的结果应能够保证原有已分配的内容可以被映射到新的缓冲中去,而不会被映射到旧的缓冲集合中的其他缓冲区。

容易看到,上面的简单 hash 算法 hash(object)%N 难以满足单调性要求。

3 consistent hashing 算法的原理

consistent hashing 是一种 hash 算法,简单的说,在移除 / 添加一个 cache 时,它能够尽可能小的改变已存在key 映射关系,尽可能的满足单调性的要求。

下面就来按照 5 个步骤简单讲讲 consistent hashing 算法的基本原理。

3.1 环形hash 空间

考虑通常的 hash 算法都是将 value 映射到一个 32 为的 key 值,也即是 0~2^32-1 次方的数值空间;我们可以将这个空间想象成一个首( 0 )尾( 2^32-1 )相接的圆环,如下面图 1 所示的那样。

consistent hashing 算法早在 1997 年就在论文 Consistent hashing and random trees 中被提出,目前在cache 系统中应用越来越广泛;

1 基本场景

比如你有 N 个 cache 服务器(后面简称 cache ),那么如何将一个对象 object 映射到 N 个 cache 上呢,你很可能会采用类似下面的通用方法计算 object 的 hash 值,然后均匀的映射到到 N 个 cache ;

hash(object)%N

一切都运行正常,再考虑如下的两种情况;

1 一个 cache 服务器 m down 掉了(在实际应用中必须要考虑这种情况),这样所有映射到 cache m 的对象都会失效,怎么办,需要把 cache m 从 cache 中移除,这时候 cache 是 N-1 台,映射公式变成了 hash(object)%(N-1) ;

2 由于访问加重,需要添加 cache ,这时候 cache 是 N+1 台,映射公式变成了 hash(object)%(N+1) ;

1 和 2 意味着什么?这意味着突然之间几乎所有的 cache 都失效了。对于服务器而言,这是一场灾难,洪水般的访问都会直接冲向后台服务器;

再来考虑第三个问题,由于硬件能力越来越强,你可能想让后面添加的节点多做点活,显然上面的 hash 算法也做不到。

有什么方法可以改变这个状况呢,这就是 consistent hashing...

2 hash 算法和单调性

   Hash 算法的一个衡量指标是单调性( Monotonicity ),定义如下:

  单调性是指如果已经有一些内容通过哈希分派到了相应的缓冲中,又有新的缓冲加入到系统中。哈希的结果应能够保证原有已分配的内容可以被映射到新的缓冲中去,而不会被映射到旧的缓冲集合中的其他缓冲区。

容易看到,上面的简单 hash 算法 hash(object)%N 难以满足单调性要求。

3 consistent hashing 算法的原理

consistent hashing 是一种 hash 算法,简单的说,在移除 / 添加一个 cache 时,它能够尽可能小的改变已存在key 映射关系,尽可能的满足单调性的要求。

下面就来按照 5 个步骤简单讲讲 consistent hashing 算法的基本原理。

3.1 环形hash 空间

考虑通常的 hash 算法都是将 value 映射到一个 32 为的 key 值,也即是 0~2^32-1 次方的数值空间;我们可以将这个空间想象成一个首( 0 )尾( 2^32-1 )相接的圆环,如下面图 1 所示的那样。

图 1 环形 hash 空间

3.2 把对象映射到hash 空间

接下来考虑 4 个对象 object1~object4 ,通过 hash 函数计算出的 hash 值 key 在环上的分布如图 2 所示。

hash(object1) = key1;

… …

hash(object4) = key4;

图 2 4 个对象的 key 值分布

3.3 把cache 映射到hash 空间

Consistent hashing 的基本思想就是将对象和 cache 都映射到同一个 hash 数值空间中,并且使用相同的 hash算法。

假设当前有 A,B 和 C 共 3 台 cache ,那么其映射结果将如图 3 所示,他们在 hash 空间中,以对应的 hash 值排列。

hash(cache A) = key A;

… …

hash(cache C) = key C;

图 3 cache 和对象的 key 值分布

说到这里,顺便提一下 cache 的 hash 计算,一般的方法可以使用 cache 机器的 IP 地址或者机器名作为 hash输入。

3.4 把对象映射到cache

现在 cache 和对象都已经通过同一个 hash 算法映射到 hash 数值空间中了,接下来要考虑的就是如何将对象映射到 cache 上面了。

在这个环形空间中,如果沿着顺时针方向从对象的 key 值出发,直到遇见一个 cache ,那么就将该对象存储在这个 cache 上,因为对象和 cache 的 hash 值是固定的,因此这个 cache 必然是唯一和确定的。这样不就找到了对象和 cache 的映射方法了吗?!

依然继续上面的例子(参见图 3 ),那么根据上面的方法,对象 object1 将被存储到 cache A 上; object2 和object3 对应到 cache C ; object4 对应到 cache B ;

3.5 考察cache 的变动

前面讲过,通过 hash 然后求余的方法带来的最大问题就在于不能满足单调性,当 cache 有所变动时, cache会失效,进而对后台服务器造成巨大的冲击,现在就来分析分析 consistent hashing 算法。

3.5.1 移除 cache

考虑假设 cache B 挂掉了,根据上面讲到的映射方法,这时受影响的将仅是那些沿 cache B 逆时针遍历直到下一个 cache ( cache C )之间的对象,也即是本来映射到 cache B 上的那些对象。

因此这里仅需要变动对象 object4 ,将其重新映射到 cache C 上即可;参见图 4 。

图 4 Cache B 被移除后的 cache 映射

3.5.2 添加 cache

再考虑添加一台新的 cache D 的情况,假设在这个环形 hash 空间中, cache D 被映射在对象 object2 和object3 之间。这时受影响的将仅是那些沿 cache D 逆时针遍历直到下一个 cache ( cache B )之间的对象(它们是也本来映射到 cache C 上对象的一部分),将这些对象重新映射到 cache D 上即可。

因此这里仅需要变动对象 object2 ,将其重新映射到 cache D 上;参见图 5 。

图 5 添加 cache D 后的映射关系

4 虚拟节点

考量 Hash 算法的另一个指标是平衡性 (Balance) ,定义如下:

平衡性

  平衡性是指哈希的结果能够尽可能分布到所有的缓冲中去,这样可以使得所有的缓冲空间都得到利用。

hash 算法并不是保证绝对的平衡,如果 cache 较少的话,对象并不能被均匀的映射到 cache 上,比如在上面的例子中,仅部署 cache A 和 cache C 的情况下,在 4 个对象中, cache A 仅存储了 object1 ,而 cache C 则存储了object2 、 object3 和 object4 ;分布是很不均衡的。

为了解决这种情况, consistent hashing 引入了“虚拟节点”的概念,它可以如下定义:

“虚拟节点”( virtual node )是实际节点在 hash 空间的复制品( replica ),一实际个节点对应了若干个“虚拟节点”,这个对应个数也成为“复制个数”,“虚拟节点”在 hash 空间中以 hash 值排列。

仍以仅部署 cache A 和 cache C 的情况为例,在图 4 中我们已经看到, cache 分布并不均匀。现在我们引入虚拟节点,并设置“复制个数”为 2 ,这就意味着一共会存在 4 个“虚拟节点”, cache A1, cache A2 代表了cache A ; cache C1, cache C2 代表了 cache C ;假设一种比较理想的情况,参见图 6 。

图 6 引入“虚拟节点”后的映射关系

此时,对象到“虚拟节点”的映射关系为:

objec1->cache A2 ; objec2->cache A1 ; objec3->cache C1 ; objec4->cache C2 ;

因此对象 object1 和 object2 都被映射到了 cache A 上,而 object3 和 object4 映射到了 cache C 上;平衡性有了很大提高。

引入“虚拟节点”后,映射关系就从 { 对象 -> 节点 } 转换到了 { 对象 -> 虚拟节点 } 。查询物体所在 cache 时的映射关系如图 7 所示。

图 7 查询对象所在 cache

“虚拟节点”的 hash 计算可以采用对应节点的 IP 地址加数字后缀的方式。例如假设 cache A 的 IP 地址为202.168.14.241 。

引入“虚拟节点”前,计算 cache A 的 hash 值:

Hash(“202.168.14.241”);

引入“虚拟节点”后,计算“虚拟节”点 cache A1 和 cache A2 的 hash 值:

Hash(“202.168.14.241#1”);  // cache A1

Hash(“202.168.14.241#2”);  // cache A2

使用一致性hash的应用

Couchbase

Apache Cassandra

Akka

参考:

https://en.wikipedia.org/wiki/Consistent_hashing

https://community.oracle.com/blogs/tomwhite/2007/11/27/consistent-hashing

一致性哈希算法(适用于分库分表、RPC负载均衡)转的更多相关文章

  1. 一致性hash 大众点评订单分库分表实践

    井底之蛙 https://mp.weixin.qq.com/s?src=3&timestamp=1543228894&ver=1&signature=uF6nV0yYseJ55 ...

  2. 面试官:"谈谈分库分表吧?"

    原文链接:面试官:"谈谈分库分表吧?" 面试官:“有并发的经验没?”  应聘者:“有一点.”   面试官:“那你们为了处理并发,做了哪些优化?”   应聘者:“前后端分离啊,限流啊 ...

  3. 面试官:"谈谈分库分表吧?"

    转自:学习Java的小姐姐 www.cnblogs.com/chenchen0618/p/11624480.html 1.什么是分库分表 从字面上简单理解,就是将原本存储在一个库的数据分块存储在多个库 ...

  4. 一致性Hash算法在数据库分表中的实践

    最近有一个项目,其中某个功能单表数据在可预估的未来达到了亿级,初步估算在90亿左右.与同事详细讨论后,决定采用一致性Hash算法来完成数据库的自动扩容和数据迁移.整个程序细节由我同事完成,我只是将其理 ...

  5. ShardingSphere-proxy-5.0.0企业级分库分表、读写分离、负载均衡、雪花算法、取模算法整合(八)

    一.简要说明 以下配置实现了: 1.分库分表 2.每一个分库的读写分离 3.读库负载均衡算法 4.雪花算法,生成唯一id 5.字段取模 二.配置项 # # Licensed to the Apache ...

  6. 分库分表之ShardingSphere

    目录 分库分表诞生的前景 分库分表的方式(垂直拆分,水平复制) 1.垂直拆分 1.1 垂直分库 1.2 垂直分表 2.水平拆分 2.1 水平分库 2.2 水平分表 分库分库中间件 ShardingSp ...

  7. 解读分库分表中间件Sharding-JDBC

    [编者按]数据库分库分表从互联网时代开启至今,一直是热门话题.在NoSQL横行的今天,关系型数据库凭借其稳定.查询灵活.兼容等特性,仍被大多数公司作为首选数据库.因此,合理采用分库分表技术应对海量数据 ...

  8. 数据库分库分表(sharding)系列【转】

    原文地址:http://www.uml.org.cn/sjjm/201211212.asp数据库分库分表(sharding)系列 目录; (一) 拆分实施策略和示例演示 (二) 全局主键生成策略 (三 ...

  9. 数据库分库分表(sharding)系列

    数据库分库分表(sharding)系列     目录; (一) 拆分实施策略和示例演示 (二) 全局主键生成策略 (三) 关于使用框架还是自主开发以及sharding实现层面的考量 (四) 多数据源的 ...

随机推荐

  1. [pat]1045 Favorite Color Stripe

    1.用一个数组里面存储喜爱数字的值来区分数字是不是喜爱,以及值的大小顺序,用vector循环删除a数组中不是喜爱的元素,这里it=erase()之后it自动指向下一个元素,由于循环每次还要自增1,所以 ...

  2. Cocos Creator 动作(动画)笔记

    动作cc.ActionInterval 和cc.ActionInstant; var action = cc.moveTo(2, 100, 100); // 创建一个移动动作node.runActio ...

  3. Selenium基本使用(十一)异常捕获

    1. 抛出异常和自定义异常 Python用异常对象(exception object)表示异常情况,遇到错误后,会引发异常.如果异常对象并未被处理或捕捉,程序就会用所谓的回溯(Traceback,一种 ...

  4. JavaScript数组去重方法总结

    一.双重遍历去重 function onlyFigure(arr) { let newarr = []; const length = arr.length for (let i = 0; i < ...

  5. 关于调用数据库函数executeUpdate抛出异常

    2018.06.11写一个web程序的时候发现了一个问题,解决了好几天都没解决,并且也找不到问题所在.偶然百度找到了根源所在,希望可以帮到大家. 1 在调用这个函数的时候一直抛异常.刚开始我还以为是代 ...

  6. Hibarnate控制台打印不出sql,并且报出异常:org.hibernate.exception.JDBCConnectionException: Cannot open connection

    1.认真查看hibarnate.cfg.xml文件中连接数据库的各个信息是否正确;如果正确看下一步; 2.MySQL版本>=5.6.X,对应的mysql-connector-java jar 的 ...

  7. html5-基本知识小结及补充

    <!DOCTYPE html><html lang="en"><head>    <meta charset="UTF-8&qu ...

  8. hdu3511 圆的扫描线

    http://blog.csdn.net/firenet1/article/details/47041145 #include <iostream> #include <algori ...

  9. arc 093 C – Traveling Plan

    题意: 给出横坐标上一系列的点,一个人从0出发按照下标顺序访问每一个点,再回到0点. 问每次如果去掉一个点,那么访问的距离变为多少. 思路: 去掉这个点,那么就减去这个点到上一点到这一点的距离,减去这 ...

  10. 基于TCP/IP协议的socket通讯server

    思路: socket必须要随项目启动时启动,所以需用Spring自带的监听器,需要保持长连接,要用死循环,所以必须另外起线程,不能阻碍主线程运行 1.在项目的web.xml中配置listener &l ...