原文链接https://www.cnblogs.com/cly-none/p/9711279.html

题意:求有多少个非空集合\(S \subset N\)满足,\(\forall a,b \in S, a \bigotimes b \in S\),且\(S\)中的最大元素不超过\(n\)。对\(10^9 + 7\)取模。

\(n \leq 10^9\)

显然,每个合法的集合\(S\)都可以由一个线性基来生成。然而,一个集合可以有多个线性基。如果我们能让每个合法集合和每个符合某条件的线性基一一对应,那么我们就能把问题转化为对某类线性基的计数。

考虑对线性基进行高斯消元。结果就是,在线性基中的每一位,要么是一个基的最高位,那么其他的基上的这一位都是0;否则所有基上这一位可以任意填。因为它们可以由任何线性基高斯消元得到,所以每一个合法集合都能有这样的一个线性基。同样,每一个线性基可以生成一个合法的集合。剩下的问题就在于,证明所有不同的高斯消元后的线性基,生成的集合是不同的。

  • 两个线性基的基数不同或基的最高位不同。那么它们生成的集合显然不同。
  • 基数和每个基的最高位都相同。考虑两个线性基中最大的不相同的基。我们取出其中的一个基,尝试在另一个线性基中表达这个数。但当我们遇到它们不相同的最高一位时,因为这一位可以是1或0,所以没有一个基的最高一位是这一位,所以那个基不能被另一个线性基表达。那么,这两个线性基生成的集合就是不同的。

接下来,我们对线性基做dp就可以了。容易得到,高斯消元后的线性基,能表达出的最大元素就是所有基的异或和。那么,我们从高到低在每一位上讨论,是否存在一个基的最高位是这一位以及这一位上所有基的异或和就好了。当然要再套一个数位dp。

时间复杂度\(O(\log^2 n)\)。

#include <bits/stdc++.h>
using namespace std;
const int N = 40, MOD = (int)(1e9 + 7);
int dp[N][N][2],len,lim[N],n,ans;
int calc(int x,int sgn) {
if (x == 0) return sgn ^ 1;
return 1 << x >> 1;
}
int main() {
cin >> n;
if (n == 0) return puts("1"), 0;
while (n) {
lim[++len] = n&1;
n >>= 1;
}
reverse(lim+1,lim+len+1);
dp[0][0][1] = 1;
for (int i = 0 ; i < len ; ++ i)
for (int j = 0 ; j <= i ; ++ j)
for (int k = 0 ; k < 2 ; ++ k) {
(dp[i+1][j][k & (lim[i+1]^1)] += 1ll * dp[i][j][k] * calc(j,0) % MOD) %= MOD;
if ((!k) || lim[i+1]) {
(dp[i+1][j][k] += 1ll * dp[i][j][k] * calc(j,1) % MOD) %= MOD;
(dp[i+1][j+1][k] += dp[i][j][k]) %= MOD;
}
}
for (int i = 0 ; i <= len ; ++ i)
(ans += (dp[len][i][0] + dp[len][i][1]) % MOD) %= MOD;
printf("%d\n",ans);
return 0;
}

小结:关键也就在于线性基可以通过高斯消元避免重复。算是涨知识了。

【做题】CF388D. Fox and Perfect Sets——线性基&数位dp的更多相关文章

  1. BZOJ CF388D. Fox and Perfect Sets [线性基 数位DP]

    CF388D. Fox and Perfect Sets 题意:求最大元素\(le n\)的线性空间的个数 给神题跪了 orz 容易想到 每个线性基对应唯一的线性空间,我们可以统计满足条件的对应空间不 ...

  2. 数位DP CF388D - Fox and Perfect Sets

    题目地址 一个整数perfect集合满足性质:集合中随意两个整数的异或和仍在这个集合中. 求最大数不超过K的perfect集合的个数. 每一个集合都是一个线性的向量空间. .能够通过全然的高斯消元得出 ...

  3. codeforces 388D Fox and Perfect Sets(线性基+数位dp)

    #include<bits/stdc++.h> using namespace std; #define fi first #define se second #define mp mak ...

  4. Codeforces 388 D. Fox and Perfect Sets

    $ >Codeforces \space 388 D.  Fox and Perfect Sets<$ 题目大意 : 定义一个完美的集合 \(S\) ,当且仅当 \(S\) 非负非空,且 ...

  5. Codeforces 1299D - Around the World(线性基+图论+dp)

    Codeforces 题目传送门 & 洛谷题目传送门 一道线性基的综合题 %%%%%% 首先注意到"非简单路径""异或和"等字眼,可以本能地想到线性基. ...

  6. bzoj 3811: 玛里苟斯【线性基+期望dp】

    这个输出可是有点恶心啊--WA*inf,最后抄了别人的输出方法orz 还有注意会爆long long,要开unsigned long long 对于k==1,单独考虑每一位i,如果这一位为1则有0.5 ...

  7. Codeforces Round #460 (Div. 2) B Perfect Number(二分+数位dp)

    题目传送门 B. Perfect Number time limit per test 2 seconds memory limit per test 256 megabytes input stan ...

  8. Codeforces 388D Fox and Perfect Sets

    链接:CF388D 题目大意 给定一个数\(n\),求选择\(0 \sim n\)中任意个数的数字组成的集合\(S\)中,有多少满足若\(a\in S,b\in S\),则\(a \bigoplus ...

  9. HDU 5863 cjj's string game ( 16年多校10 G 题、矩阵快速幂优化线性递推DP )

    题目链接 题意 : 有种不同的字符,每种字符有无限个,要求用这k种字符构造两个长度为n的字符串a和b,使得a串和b串的最长公共部分长度恰为m,问方案数 分析 : 直觉是DP 不过当时看到 n 很大.但 ...

随机推荐

  1. java中的锁之Lock接口与Condition接口

    一.Lock源码. 1.是一个接口.一共有6个方法. 2.方法详细如下: (1)当前线程尝试获取锁.结果分两种情况,一是成功获取到锁,则返回:二是获取锁失败,则一直等待.不响应中断请求. (2)当前线 ...

  2. ruby中的alias和alias_method

    ruby中的alias和alias_method都可以重命名一个方法,它们的区别如下: 1.alias是ruby的一个关键字,因此使用的时候是alias :newname :oldname alias ...

  3. 04-树6 Complete Binary Search Tree(30 分)

    title: 04-树6 Complete Binary Search Tree(30 分) date: 2017-11-12 14:20:46 tags: - 完全二叉树 - 二叉搜索树 categ ...

  4. awk命令学习(1)

    awk是一个强大的文本分析工具,相对于grep的查找,sed的编辑,awk在其对数据分析并生成报告时,显得尤为强大.简单来说awk就是把文件逐行的读入,以空格为默认分隔符将每行切片,切开的部分再进行各 ...

  5. 【转】C#中base关键字的几种用法

    base其实最大的使用地方在面相对性开发的多态性上,base可以完成创建派生类实例时调用其基类构造函数或者调用基类上已被其他方法重写的方法.例如: 2.1关于base调用基类构造函数 public c ...

  6. css中选项卡的实现

    制作一个简单的选项卡,以供初学者参考:关于css书写的比较粗糙.请见谅 <!DOCTYPE html><html lang="en"><head> ...

  7. python 使用json.dumps() 的indent 参数,获得漂亮的格式化字符串后输出

    想获得漂亮的格式化字符串后输出,可以使用json.dumps() 的indent 参数.它会使得输出和pprint() 函数效果类似 >>> data {'age': 4, 'nam ...

  8. numpy元素级数组函数

    一元函数 abs, fabs 计算整数.浮点数或复数的绝对值.对于非复数值,可以使用更快的fabs. sqrt 计算各元素的平方根.相当于arr ** 0.5 sqare 计算各元素的平方.相当于ar ...

  9. 20165305 苏振龙《Java程序设计》第七周学习总结

    第十一章 JDBC技术在数据库开发中占有很重要的地位,JDBC操作不同的数据库仅仅是连接方式上的差异而已,使用JDBC的应用程序一旦和数据库建立连接,就可以使用JDBC提供的API操作数据库. 当查询 ...

  10. Presto 学习和使用笔记

    1.presto 表连接查询的连接条件中不支持使用函数 比如下面的脚本在presto中运行会报错 select t1.period_start_date, t2.statistic_date from ...