【做题】HDU6331 Walking Plan——矩阵&分块
题意:给出一个有\(n\)个结点的有向图,边有边权。有\(q\)组询问,每次给出\(s,t,k\),问从\(s\)到\(t\)至少经过\(k\)条边的最短路。
\(n \leq 50, \, q \leq 10^5, \, k \leq 10^4\)
首先,注意到\(n\)非常小这个性质。对于很多这类点数少,询问不易维护也不复杂的图论题,可以用矩阵来做。
我们设原图的邻接矩阵为\(G\),并定义矩阵的二元运算\(\bigotimes\)为:
\]
那么,令\(A^k = \underbrace{A \bigotimes A \cdots A}_{k\text{ times}}\),那么\((G^k)_{ij}\)就等于从\(i\)到\(j\)恰好走\(k\)步的最短路。因此,每次询问的答案就是\(G^k \bigotimes S\),其中\(S\)为图floyd后得到的邻接矩阵。
接下来,让我们考虑这样一个暴力:一开始对于所有可能的路径长度\(l \space (l \leq k + n )\),求出\(G^l \bigotimes S\)。这样预处理是\(O(n^3 k)\),询问是\(O(1)\)。
这样做的话,预处理复杂过高,但每次询问能允许更高的复杂度(\(O(n)\))。注意到,询问要求的只是一个矩阵上的一个元素的罢了。因此,如果我们能把所有\(G^k \bigotimes S\)都表示为\(A \bigotimes B\)的形式,并且所有可能的\(A\)和\(B\)的总数量可以接受,就可以了。这也相当于把所有\(k\)拆分为两个数。
答案是分块。令块大小为\(H(k)\),那么我们可以把\(k\)分为\(\left\lfloor \frac {k} {H(k)} \right\rfloor \times H(k) + k \mod H(k)\)的形式。因此,我们令\(H(k) = \sqrt k\),那么,只要求出所有\(A_i = G^{i\sqrt k}, \ B_i = G_i \bigotimes S\),就可以\(O(n)\)回答每次询问,且\(|A| = |B| = \sqrt k\),故预处理复杂度也能达到\(O(n^3 \sqrt k)\)。
时间复杂度\(O(n^3 \sqrt k + nq)\)。
#include <bits/stdc++.h>
using namespace std;
const int N = 55, BAS = 100, INF = 0x3f3f3f3f;
typedef int mat[N][N];
int n,m,q;
mat a[N * 3],b[N * 3];
void mul(mat& x,mat y,mat z) {
memset(x,0x3f,sizeof(mat));
for (int k = 1 ; k <= n ; ++ k)
for (int i = 1 ; i <= n ; ++ i)
for (int j = 1 ; j <= n ; ++ j)
x[i][j] = min(x[i][j],y[i][k] + z[k][j]);
}
int main() {
int T,x,y,z,ret;
scanf("%d",&T);
while (T --) {
scanf("%d%d",&n,&m);
memset(a,0x3f,sizeof a);
memset(b,0x3f,sizeof b);
for (int i = 1 ; i <= m ; ++ i) {
scanf("%d%d%d",&x,&y,&z);
b[1][x][y] = min(b[1][x][y],z);
}
for (int i = 1 ; i <= n ; ++ i)
a[0][i][i] = 0, b[0][i][i] = 0;
for (int i = 2 ; i <= BAS + n ; ++ i)
mul(b[i],b[i-1],b[1]);
for (int i = 1 ; i <= n ; ++ i)
for (int j = 1 ; j <= n ; ++ j)
a[1][i][j] = b[100][i][j];
for (int i = 2 ; i <= BAS ; ++ i)
mul(a[i],a[i-1],a[1]);
for (int k = BAS + n - 1 ; k >= 0 ; -- k)
for (int i = 1 ; i <= n ; ++ i)
for (int j = 1 ; j <= n ; ++ j)
b[k][i][j] = min(b[k][i][j],b[k+1][i][j]);
scanf("%d",&q);
for (int i = 1 ; i <= q ; ++ i) {
scanf("%d%d%d",&x,&y,&z);
ret = INF;
for (int k = 1 ; k <= n ; ++ k)
ret = min(ret,a[z/BAS][x][k] + b[z%BAS][k][y]);
if (ret != INF) printf("%d\n",ret);
else puts("-1");
}
}
return 0;
}
小结:感觉分块白学了……还是只会死板地使用。
【做题】HDU6331 Walking Plan——矩阵&分块的更多相关文章
- hdu6331 Walking Plan
题意: sol: 考虑floyed 直接暴力做的话复杂度是kn^3会炸. 考虑一个比较神仙的分块做法. 注意到我们是可以直接求单独某个k的矩阵,使用矩阵快速幂即可(取min的矩阵乘法). 单独求一次的 ...
- HDU6331 Problem M. Walking Plan【Floyd + 矩阵 + 分块】
HDU6331 Problem M. Walking Plan 题意: 给出一张有\(N\)个点的有向图,有\(q\)次询问,每次询问从\(s\)到\(t\)且最少走\(k\)条边的最短路径是多少 \ ...
- [日记&做题记录]-Noip2016提高组复赛 倒数十天
写这篇博客的时候有点激动 为了让自己不颓 还是写写日记 存存模板 Nov.8 2016 今天早上买了两个蛋挞 吃了一个 然后就做数论(前天晚上还是想放弃数论 但是昨天被数论虐了 woc noip模拟赛 ...
- 2018HDU多校训练-3-Problem M. Walking Plan
链接:http://acm.hdu.edu.cn/showproblem.php?pid=6331 Walking Plan Problem Description There are n inte ...
- HDU6331Problem M. Walking Plan
传送门 分块floyd $f[i][j][k]$表示从i走k步到j的最短路 $g[i][j][k]$表示从i走k*100步到j的最短路 $h[i][j][k]$表示从i至少走k步到j的最短路 询问从x ...
- 最小割 总结&&做题记录
模型要点: 1.一般适用于二取一问题或者01规划. 2.利用最小割=最大流,转化为最大流求之. 建议阅读胡伯涛的论文 <<最小割模型在信息学竞赛的应用>>,有精彩有序的证明和各 ...
- project euler做题记录
ProjectEuler_做题记录 简单记录一下. problem 441 The inverse summation of coprime couples 神仙题.考虑答案为: \[\begin{a ...
- AtCoder Grand Contest 11~17 做题小记
原文链接https://www.cnblogs.com/zhouzhendong/p/AtCoder-Grand-Contest-from-11-to-20.html UPD(2018-11-16): ...
- AtCoder Grand Contest 1~10 做题小记
原文链接https://www.cnblogs.com/zhouzhendong/p/AtCoder-Grand-Contest-from-1-to-10.html 考虑到博客内容较多,编辑不方便的情 ...
随机推荐
- Vue系列之 => 模拟购物车添加小球动画
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- hdu4778 状态压缩
#include <iostream> #include <algorithm> #include <cstdio> #include <vector> ...
- GCD(III)
GCD 线程间的通信 在iOS开发过程中,我们一般在主线程里边进行UI刷新,例如:点击.滚动.拖拽等事件.我们通常把一些耗时的操作放在其他线程,比如说图片下载.文件上传等耗时操作.而当我们有时候在其他 ...
- linux文件系统的用户和权限管理
1. 为什么要有用户的概念? 多用户,多任务业务对系统资源的隔离产生需求 2. linux 用户的分类? 2.1. 管理员 拥有操作所有文件的权限 2.2. 普通用户 2.2.1. 普通登录用户 2. ...
- JS实战
1. jquery取消点击事件 $("#dashboard").unbind("click"); 2.jquery绑定鼠标滑过,离开事件 $("#da ...
- scrapy框架 + selenium 爬取豆瓣电影top250......
废话不说,直接上代码..... 目录结构 items.py import scrapy class DoubanCrawlerItem(scrapy.Item): # 电影名称 movieName = ...
- Lucene 个人领悟 (三)
其实接下来就是贴一下代码,熟悉一下Lucene的正常工作流程,或者说怎么使用这个API,更深层次的东西这篇文章不会讲到. 上一篇文章也说了maven的配置,只要你电脑联网就可以下载下来.我贴一下代码. ...
- web前端利用leaflet生成粒子风场,类似windy
wind.js如下: $(function() { var dixing = L.tileLayer.chinaProvider('Google.Satellite.Map', { maxZoom: ...
- CATALINA_OPTS和 JAVA_OPTS区别
在Tomcat的catalina.sh文件中的启停server脚本中都应用到了两个变量: CATALINA_OPTS和JAVA_OPTS.用于保存Tomcat运行所需的各种参数. 他们在文件中的注释如 ...
- System.map文件的作用解析
有关System.map文件的信息好象很缺乏.其实它一点也不神秘,并且在整个事情当中它并不象看上去那么得重要.但是由于缺乏必要的文档说明,使其显得比较神秘.它就象耳垂,我们每个人都有,但却不知道是干什 ...