第二类斯特林数

第二类Stirling数:S2(p, k)
1.组合意义:第二类Stirling数计数的是把p个互异元素划分为k个非空集合的方法数
2.递推公式:
S2(0, 0) = 1
S2(p, 0) = 0 ( p >= 1)  显然p >= 1时这种方法不存在
S2(p, p) = 1  显然这时每个元素看为一个集合
S2(p, k) = k * S2(p - 1, k) + S2(p - 1, k - 1)
考虑将1,2,3,...,p划分为k个非空集合,考虑p
⑴将p单独划分为一个集合,此时的方案数等于将1,2,3,...,p -1划分为k - 1个非空集合的方案树,及S2(p - 1, k - 1)。
⑵将p和其他元素放一块,先考虑将1,2,3,..., p - 1划分为k个非空集合,此时p有k种放法,即k * S2(p - 1, k)。
故 S2(p, k) = k * S2(p - 1, k) + S2(p - 1, k - 1)
3.类pascal三角形:如二项式那样,可以构造这些Stiring数S2(p, k)的类pascal三角形。
  0 1 2 3 4 5 6 ...
0 1              
1 0 1            
2 0 1 1          
3 0 1 3 1        
4 0 1 7 6 1      
5 0 1 15 25 10 1    
6 0 1 31 90 65 15 1  
...                
 
 
 
 
 
 
 
 
 
 
 
4.通项公式:
先把这k个集合看为互异的,则可以通过容斥原理计算将p个元素放入k个互异集合的个数,再除以k!即可(公式不好打。。。)
 
bell数:
1.组合意义:将p个元素划分为若干集合的方法数。
2.B(p) = S2(p, 0) + S2(p, 1) + S2(p, 2) + ... + S2(p, p)
集合数显然不能超过p,故bell数即为Stirling数求和
3.递推公式:其中C(n, m)表示n元集中m元子集的个数
B(p) = C(p - 1, 0) * B(0) + C(p - 1, 1) * B(1) + ... + C(p - 1, p - 1) * B(p - 1)
把集合{1, 2, 3, 4, ..., p}划分为若干集合的方法数,考虑元素p
若令p所在集合有p - k个元素,则剩下的元素为k个,在p - 1个元素中选k个,故此时有C(p - 1, k) * B(k) 个方案,求和即可
 
第一类Stirling数为把p个元素划分为k个非空循环排列的方案数。
S1(p, k) = (p - 1) * S1(p - 1, k) + S1(p - 1, k - 1)
//没有代码
 
 
 
 

第二类Stirling数的更多相关文章

  1. lightOJ 1326 Race(第二类Stirling数)

    题目链接:http://lightoj.com/volume_showproblem.php?problem=1326 题意:有n匹马赛跑.问有多少种不同的排名结果.可以有多匹马的排名相同. 思路:排 ...

  2. [总结] 第二类Stirling数

    上一道例题 我们来介绍第二类Stirling数 定义 第二类Stirling数实际上是集合的一个拆分,表示将n个不同的元素拆分成m个集合的方案数,记为 或者 .和第一类Stirling数不同的是,集合 ...

  3. [BZOJ5093]图的价值(NTT+第二类Stirling数)

    5093: [Lydsy1711月赛]图的价值 Time Limit: 30 Sec  Memory Limit: 256 MBSubmit: 250  Solved: 130[Submit][Sta ...

  4. LightOJ 1326 – Race 第二类Stirling数/

    简单的模板题. 题意:问n匹马出现的不同排名数. 题解:可以使用DP,本质上还是第二类Stirling数(隔板法) #include <stdio.h> #include <iost ...

  5. HDU 2643 Rank:第二类Stirling数

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2643 题意: 有n个个选手参赛,问排名有多少种情况(可以并列). 题解: 简化问题: 将n个不同的元素 ...

  6. 第二类Stirling数初探 By cellur925

    上午noi.ac崩崩崩了,栽在组合数学上,虽说最后在辰哥&Chemist的指导下A掉了此题,也发现自己组合数学太弱了qwq. 在luogu上找题,结果找到了一个第二类斯特林数的题(还是双倍经验 ...

  7. 自然数幂和——第一类Stirling数和第二类Stirling数

    第一类Stirling数 首先设 $$S_k(n)=\sum_{i=0}^ni^k$$ 根据第一类斯特林数的定义(P是排列数,C是组合数,s是Stirling) $$C_n^k={P_n^k\over ...

  8. (转) [组合数学] 第一类,第二类Stirling数,Bell数

    一.第二类Stirling数 定理:第二类Stirling数S(p,k)计数的是把p元素集合划分到k个不可区分的盒子里且没有空盒子的划分个数. 证明:元素在哪些盒子并不重要,唯一重要的是各个盒子里装的 ...

  9. 第一类和第二类Stirling数

    做了老是忘…… 实际问题: 找维基百科.百度百科…… 第一类Stirling数 n个元素构成m个圆排列 S(n,m)=S(n-1,m-1)+(n-1)*S(n-1,m) 初始 S(0,0)=1 S(n ...

随机推荐

  1. python 之 知识点(1)

    在python是使用bif=built in functions 即内置函数 dir(__builtins__) 可以查看所有的内置函数.注:pycharm中无法使用,不知道原因 help(input ...

  2. JavaWeb--简单分页技术

    分页需要的技术点:1.前台分页标签的使用 2.前台上一页,下一页显示的业务逻辑 3.MSQL用到的语句  limit 4.封装pageBean对象 这个是PageBean用到的 分页公式: int t ...

  3. Kubernetes工作流之Pods二

    Init Containers This feature has exited beta in 1.6. Init Containers can be specified in the PodSpec ...

  4. linux 基础命令(12月25日笔记)

    1.  cp指令指令:cp          (copy,复制)作用:复制文件/文件夹到指定的位置语法:#cp [-r] 被复制的文档路径 文档被复制到的路径选项:         -r:recurs ...

  5. 一.移动app测试与质量保证

    1.典型的互联网产品的研发流程,及其核心做法.这里并不是简单的套用敏捷等流程方法,而是经过时间摸索和不断调整,找到最适合自己产品的流程做法,这是质量实践质量保证的基础. 2.系统功能测试实践.包涵需求 ...

  6. python 部分函数

    abs(number) ,返回数字的绝对值cmath.sqrt(number) ,返回平方根,也可以应用于负数float(object) ,把字符串和数字转换为浮点数help() ,提供交互式帮助in ...

  7. 下载安装Android sdk tools

    安装java: https://www.cnblogs.com/sea-stream/p/5815957.html 下载地址:https://www.androiddevtools.cn/ 选择版本 ...

  8. 用友软件系统管理员账号admin密码忘记了,如何解决?

    1.打开数据库. 2.点开  数据库-UFSystem. 3.找到dbo.UA_user表,鼠标右键,点打开表. 4.打开后,找到admin,cPassword列即可找到系统管理员密码.

  9. numpy函数

    a=np.array([1,2,3,4,5,6]) a=a.reshape([2,-1])      # -1:表示3,此处将a数组设置为2行3列 a[1,2]=66  # 把a的6改成66 a=np ...

  10. boostrapt的二级下拉菜单

    <!DOCTYPE html><html> <head> <meta charset="UTF-8"> <meta conte ...