BZOJ.4361.isn(DP 树状数组 容斥)
长度为\(i\)的不降子序列个数是可以DP求的。
用\(f[i][j]\)表示长度为\(i\),结尾元素为\(a_j\)的不降子序列个数。转移为\(f[i][j]=\sum f[i-1][k]\),其中\(k\)满足\(k<j\)且\(a_k\leq a_j\),可以用树状数组\(O(n^2\log n)\)解决。
那么长度为为\(i\)的不降子序列个数\(sum[i]=\sum_{j=i}^nf[i][j]\)。
比较麻烦的是得到不降序列后会立刻停止操作。如果没有这个限制,答案就是\(\sum_{i=1}^nsum[i]\times (n-i)!\)。
但是很简单的是,如果长为\(i\)的不降序列是由另一个不降序列继续删数得到的(即不合法的方案),那么这个方案数就是\(sum[i+1]\times (i+1)\times (n-i+1)!\)。
对每个\(i\)减掉不合法方案的贡献就可以了,即\(Ans=\sum_{i=1}^nsum[i]\times (n-i)!-sum[i+1]\times (i+1)\times (n-i+1)!\)。
//32268kb 1256ms
#include <cstdio>
#include <cctype>
#include <cstring>
#include <algorithm>
#define gc() getchar()
#define mod 1000000007
#define Mod(x) x>=mod&&(x-=mod)
typedef long long LL;
const int N=2005;
int fac[N],A[N],ref[N],f[N][N],g[N];
struct Bit
{
int n,t[N];
#define lb(x) (x&-x)
inline void Add(int p,int v)
{
for(; p<=n; p+=lb(p)) t[p]+=v, Mod(t[p]);
}
inline int Query(int p)
{
LL res=0;
for(; p; p^=lb(p)) res+=t[p];
return res%mod;
}
}T[N];
inline int read()
{
int now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now;
}
inline int Find(int x,int r)
{
int l=1,mid;
while(l<r)
if(ref[mid=l+r>>1]<x) l=mid+1;
else r=mid;
return l;
}
int main()
{
int n=read(),mx=0;
fac[0]=fac[1]=1;
for(int i=2; i<=n; ++i) fac[i]=1ll*fac[i-1]*i%mod;
for(int i=1; i<=n; ++i) ref[i]=A[i]=read();
std::sort(ref+1,ref+1+n); int cnt=1;
for(int i=2; i<=n; ++i) if(ref[i]!=ref[i-1]) ref[++cnt]=ref[i];
for(int i=1; i<=n; ++i) mx=std::max(mx,A[i]=Find(A[i],cnt));
for(int i=1; i<=n; ++i) f[1][i]=1;
for(int i=2; i<=n; ++i)
{
T[i-1].n=mx, T[i-1].Add(A[i-1],f[i-1][i-1]);
for(int j=i; j<=n; ++j)
f[i][j]=T[i-1].Query(A[j]), T[i-1].Add(A[j],f[i-1][j]);
}
for(int i=1; i<=n; ++i)
{
LL sum=0;
for(int j=i; j<=n; ++j) sum+=f[i][j];
g[i]=1ll*sum%mod*fac[n-i]%mod;
}
LL ans=0;
for(int i=1; i<=n; ++i) ans+=g[i]-1ll*g[i+1]*(i+1)%mod;
printf("%lld\n",(ans%mod+mod)%mod);
return 0;
}
BZOJ.4361.isn(DP 树状数组 容斥)的更多相关文章
- BZOJ 4361 isn | DP 树状数组
链接 BZOJ 4361 题面 给出一个长度为n的序列A(A1,A2...AN).如果序列A不是非降的,你必须从中删去一个数, 这一操作,直到A非降为止.求有多少种不同的操作方案,答案模10^9+7. ...
- bzoj4361 isn (dp+树状数组+容斥)
我们先设f[i][j]表示长度为i,以j结尾的不降子序列个数,$f[i][j]=\sum{f[i-1][k]},A[k]<=A[j],k<j$,用树状数组优化一下可以$O(n^2logn) ...
- 【BZOJ 4361】 4361: isn (DP+树状数组+容斥)
4361: isn Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 218 Solved: 126 Description 给出一个长度为n的序列A( ...
- 【BZOJ4361】isn 动态规划+树状数组+容斥
[BZOJ4361]isn Description 给出一个长度为n的序列A(A1,A2...AN).如果序列A不是非降的,你必须从中删去一个数, 这一操作,直到A非降为止.求有多少种不同的操作方案, ...
- bzoj 1264 [AHOI2006]基因匹配Match(DP+树状数组)
1264: [AHOI2006]基因匹配Match Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 793 Solved: 503[Submit][S ...
- 树形DP+树状数组 HDU 5877 Weak Pair
//树形DP+树状数组 HDU 5877 Weak Pair // 思路:用树状数组每次加k/a[i],每个节点ans+=Sum(a[i]) 表示每次加大于等于a[i]的值 // 这道题要离散化 #i ...
- 【bzoj2274】[Usaco2011 Feb]Generic Cow Protests dp+树状数组
题目描述 Farmer John's N (1 <= N <= 100,000) cows are lined up in a row andnumbered 1..N. The cows ...
- 奶牛抗议 DP 树状数组
奶牛抗议 DP 树状数组 USACO的题太猛了 容易想到\(DP\),设\(f[i]\)表示为在第\(i\)位时方案数,转移方程: \[ f[i]=\sum f[j]\;(j< i,sum[i] ...
- BZOJ 4361 isn 容斥+dp+树状数组
题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=4361 题意概述: 给出一个长度为N的序列A(A1,A2...AN).如果序列A不是非降的 ...
随机推荐
- [转]GDB-----1.GDB概述
作者: liigo原文链接: http://blog.csdn.net/liigo/archive/2006/01/17/582231.aspx 1.前言 本文写给主要工作在Windows操作系统下而 ...
- linux内核中链表代码分析---list.h头文件分析(二)【转】
转自:http://blog.chinaunix.net/uid-30254565-id-5637598.html linux内核中链表代码分析---list.h头文件分析(二) 16年2月28日16 ...
- 用rand()和srand()产生伪随机数的方法总结 【转】
转自:http://blog.chinaunix.net/uid-26722078-id-3754502.html 标准库(被包含于中)提供两个帮助生成伪随机数的函数: 函数一:int rand(vo ...
- pyppeteer爬虫例子
如果在centos上使用,需要安装下面的依赖 yum install pango.x86_64 libXcomposite.x86_64 libXcursor.x86_64 libXdamage.x8 ...
- oracle查看表名称和表字段注释
--查询该表字段的注释select * from user_col_comments where Table_Name like '%SMS%' --查询类似表select * from user_t ...
- JS禁止鼠标右键、禁止全选、复制、粘贴的方法(所谓的防盗功能)
简述:一个防君子不防小人的鸡肋的功能,针对小白还行. 代码如下: <script> //都能支持 document.oncontextmenu = function (e) { retur ...
- openstack 安全策略权限控制等api接口
computer API: 创建安全组 /os-security-groups 创建安全组规则 /os-security-group-default-rules Netw ...
- BOvW简介
原文地址:http://blog.csdn.net/ddreaming/article/details/52894379 BOW (bag of words) 模型简介 Bag of words模型最 ...
- 读SRE Google运维解密有感(三)
前言 这是读“SRE Google运维解密”有感第三篇,之前的文章可访问www.addops.cn来查看.我们今天来聊聊“on call”也就是运维值班制度, 本人到目前为止也还在参与一线运维的值班, ...
- 在jsp页面,将小数转换为百分比
<fmt:formatNumber type="number" value="${temp.illegalCount*100/temp.unitCount}&quo ...