1069 - Always an integer


题意:给定一个多项式,推断是否总是整数

思路:LRJ大白上的例题,上面给出了证明,仅仅要1到k + 1(k为最高次数)带入方程都是整数,那么整个方程就是整数,处理出字符串后,然后过程用高速幂计算,推断最后答案是否为0,看是否全都满足是整数。

代码:
#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std; char str[105]; struct X {
long long a, k;
} x[105]; long long mu, Max;
int xn; void build() {
mu = Max = 0; xn = 0;
long long s = 0, a = 0, flag = 1, k = 0;
int len = strlen(str);
for (int i = 0; i < len; i++) {
if (str[i] >= '0' && str[i] <= '9') {
if (s == 0) a = a * 10 + str[i] - '0';
if (s == 1) k = k * 10 + str[i] - '0';
if (s == 2) mu = mu * 10 + str[i] - '0';
}
else if (str[i] == 'n')
s = 1;
else if (str[i] == '/')
s = 2;
else if (str[i] == '+' || str[i] == '-' || str[i] == ')') {
if (s >= 1) {
if (a == 0) a = 1;
if (k == 0) k = 1;
}
Max = max(Max, k);
x[xn].a = a * flag; x[xn].k = k; xn++;
if (str[i] == '-') flag = -1;
else if (str[i] == '+') flag = 1;
a = k = s = 0;
}
}
} long long pow_mod(long long x, long long k) {
long long ans = 1;
while (k) {
if (k&1) ans = ans * x % mu;
x = x * x % mu;
k >>= 1;
}
return ans;
} bool judge() {
for (long long i = 0; i <= Max + 1; i++) {
long long ans = 0;
for (int j = 0; j < xn; j++) {
ans = (ans + x[j].a * pow_mod(i, x[j].k)) % mu;
}
if (ans) return false;
}
return true;
} int main() {
int cas = 0;
while (~scanf("%s", str) && str[0] != '.') {
build();
printf("Case %d: %s\n", ++cas, judge()?"Always an integer":"Not always an integer");
}
return 0;
}

UVA 1069 - Always an integer(数论)的更多相关文章

  1. uva 11246 - K-Multiple Free set(数论)

    题目链接:uva 11246 - K-Multiple Free set 题目大意:给定n,k.求一个元素不大于n的子集,要求该子集的元素尽量多,而且不含两个数满足a∗k=b. 解题思路:容斥原理.f ...

  2. uva 11300 - Spreading the Wealth(数论)

    题目链接:uva 11300 - Spreading the Wealth 题目大意:有n个人坐在圆桌旁,每个人有一定的金币,金币的总数可以被n整除,现在每个人可以给左右的人一些金币,使得每个人手上的 ...

  3. UVA 10820 - Send a Table 数论 (欧拉函数)

    Send a Table Input: Standard Input Output: Standard Output When participating in programming contest ...

  4. UVA 10622 - Perfect P-th Powers(数论)

    UVA 10622 - Perfect P-th Powers 题目链接 题意:求n转化为b^p最大的p值 思路:对n分解质因子,然后取全部质因子个数的gcd就是答案,可是这题有个坑啊.就是输入的能够 ...

  5. UVA 10892 LCM Cardinality(数论 质因数分解)

    LCM Cardinality Input: Standard Input Output: Standard Output Time Limit: 2 Seconds A pair of number ...

  6. UVA 11426 - GCD - Extreme (II) (数论)

    UVA 11426 - GCD - Extreme (II) 题目链接 题意:给定N.求∑i<=ni=1∑j<nj=1gcd(i,j)的值. 思路:lrj白书上的例题,设f(n) = gc ...

  7. UVA 1426 - Discrete Square Roots(数论)

    UVA 1426 - Discrete Square Roots 题目链接 题意:给定X, N. R.要求r2≡x (mod n) (1 <= r < n)的全部解.R为一个已知解 思路: ...

  8. Uva - 12050 Palindrome Numbers【数论】

    题目链接:uva 12050 - Palindrome Numbers 题意:求第n个回文串 思路:首先可以知道的是长度为k的回文串个数有9*10^(k-1),那么依次计算,得出n是长度为多少的串,然 ...

  9. UVA 10539 - Almost Prime Numbers(数论)

    UVA 10539 - Almost Prime Numbers 题目链接 题意:给定一个区间,求这个区间中的Almost prime number,Almost prime number的定义为:仅 ...

随机推荐

  1. spark 连接 mysql 数据库

    在所有master和slave上也要在spark/conf/spark-conf.sh里面设置driver的classpath,解决编译找不到driver的问题 http://www.iteblog. ...

  2. Trie树也称字典树

    Trie树 Trie树也称字典树,因为其效率很高,所以在在字符串查找.前缀匹配等中应用很广泛,其高效率是以空间为代价的. 一.Trie树的原理 利用串构建一个字典树,这个字典树保存了串的公共前缀信息, ...

  3. Tilera 服务器上hadoop单机版测试

    ---恢复内容开始--- 本篇博客用来记录在单个Tilera服务器上安装hadoop并且测试的经历,参阅了大多数博客. 1.Tilera服务器介绍 本Tilera服务器配备9核CPU,共挂在6块硬盘, ...

  4. 在C语言环境下使用google protobuf

    本文写给经常使用C编程且不喜欢C++而又要经常使用google protobuf的人.        经常写通讯程序的人对数据进行序列化或者反序列化时,可能经常使用google的protobuf(PB ...

  5. Best Practices for Speeding Up Your Web Site

    The Exceptional Performance team has identified a number of best practices for making web pages fast ...

  6. Codeforces Educational Codeforces Round 15 D. Road to Post Office

    D. Road to Post Office time limit per test 1 second memory limit per test 256 megabytes input standa ...

  7. 《Java数据结构与算法》笔记-CH5-链表-3双端链表

    /** * 双端链表的实现 */ class LinkA { public long dData; public LinkA next; public LinkA(long d) { dData = ...

  8. 关于网上流传的四个原版Windows XP_SP2全面了解

    如何查看你的XP SP2是否原版?打开Windows/System32/找到EULA这个文本文档(即eula.txt):打开在最后一行:有一个EULAID:XPSP2_RM.0_PRO_RTL_CN ...

  9. POJ 3170 Knights of Ni (暴力,双向BFS)

    题意:一个人要从2先走到4再走到3,计算最少路径. 析:其实这个题很水的,就是要注意,在没有到4之前是不能经过3的,一点要注意.其他的就比较简单了,就是一个双向BFS,先从2搜到4,再从3到搜到4, ...

  10. JavaServer Faces 2.2 requires Dynamic Web Module 2.5 or newer

    Description Resource Path Location Type JavaServer Faces 2.2 can not be installed : One or more cons ...