机器学习真的可以起作用吗?(3)(以二维PLA为例)
前两篇文章已经完成了大部分的工作,这篇文章主要是讲VC bound和 VC dimension这两个概念。
(一)前文的一点补充
根据前面的讨论,我们似乎只需要用
来替代来源的M就可以了,但是实际公式却不是这样的,我们需要数学上处理几个小细节。具体的处理方法不讲,只提供大体思路。

可以看出,真实情况下,公式中多了3个参数。
这三个参数是怎么来的?
(1)我们无法计算Eout,所以我们另外采样N个数据,用它来计算E'in,代替Eout,这对于固定的一个h是可行的。

(2)现在我们就变成了取2N个点了

(3)使用Hoffding定理

(4)最终结论称之为VC bound

注意:整个证明过程中没有具体到PLA算法,也即这个过程对所有的机器学习算法都适用。
(二)VC Dimension
定义breakpoint –1 为VC dimension。表示为dvc
可以证明对于PLA算法:dvc(H)=d+1 (d为w的维度)。
其物理意义是是自由度。这一点非常重要,让我们可以直观地认识一个hypothesis set的dvc 。
(三)VC bound的两种解释。
(1)Penalty for Model Complexity


根据上述的关系,可以得出如下结论:

这里的一个重要结论是:一般情况下,最好的选择一般不会出现在Ein最小的地方。
(2)Sample Complexity。
dvc可以提供给我们关于D大小的信息。

可以看出,当δ,ε,dvc确定的时候,我们就基本可以确定样本量N的大小。
为什么理论上N≈10000dvc,实际上通常使用10dvc呢?因为我们得到的这个理论值非常宽松!为什么这么宽松呢?四条理由。

机器学习真的可以起作用吗?(3)(以二维PLA为例)的更多相关文章
- 机器学习真的可以起作用吗?(2)(以二维PLA算法为例)
一个问题:大多数情况下,M(hypothesis set的大小)是无穷大的,例如PLA算法.那么是不是我们的原则1就不能使用了? 我们试着做一些努力: Step1:寻找hypothesis set的e ...
- paper 127:机器学习中的范数规则化之(二)核范数与规则项参数选择
机器学习中的范数规则化之(二)核范数与规则项参数选择 zouxy09@qq.com http://blog.csdn.net/zouxy09 上一篇博文,我们聊到了L0,L1和L2范数,这篇我们絮叨絮 ...
- [机器学习]-[数据预处理]-中心化 缩放 KNN(二)
上次我们使用精度评估得到的成绩是 61%,成绩并不理想,再使 recall 和 f1 看下成绩如何? 首先我们先了解一下 召回率和 f1. 真实结果 预测结果 预测结果 正例 反例 正例 TP 真 ...
- 学机器学习,不会数据处理怎么行?—— 二、Pandas详解
在上篇文章学机器学习,不会数据处理怎么行?—— 一.NumPy详解中,介绍了NumPy的一些基本内容,以及使用方法,在这篇文章中,将接着介绍另一模块——Pandas.(本文所用代码在这里) Panda ...
- 机器学习:PCA(高维数据映射为低维数据 封装&调用)
一.基础理解 1) PCA 降维的基本原理 寻找另外一个坐标系,新坐标系中的坐标轴以此表示原来样本的重要程度,也就是主成分:取出前 k 个主成分,将数据映射到这 k 个坐标轴上,获得一个低维的数据集. ...
- 机器学习在IC设计中的应用(二)--根据GBA时序结果来预测PBA
本文转自:自己的微信公众号<集成电路设计及EDA教程> <机器学习在IC设计中的应用(二)--根据GBA时序结果来预测PBA> AOCV AOCV全称:Advanced OCV ...
- 【Python机器学习实战】决策树和集成学习(二)——决策树的实现
摘要:上一节对决策树的基本原理进行了梳理,本节主要根据其原理做一个逻辑的实现,然后调用sklearn的包实现决策树分类. 这里主要是对分类树的决策进行实现,算法采用ID3,即以信息增益作为划分标准进行 ...
- 机器学习 —— 基础整理(五)线性回归;二项Logistic回归;Softmax回归及其梯度推导;广义线性模型
本文简单整理了以下内容: (一)线性回归 (二)二分类:二项Logistic回归 (三)多分类:Softmax回归 (四)广义线性模型 闲话:二项Logistic回归是我去年入门机器学习时学的第一个模 ...
- PRML读书会第一章 Introduction(机器学习基本概念、学习理论、模型选择、维灾等)
主讲人 常象宇 大家好,我是likrain,本来我和网神说的是我可以作为机动,大家不想讲哪里我可以试试,结果大家不想讲第一章.估计都是大神觉得第一章比较简单,所以就由我来吧.我的背景是统计与数学,稍懂 ...
随机推荐
- Spring + JMS + ActiveMQ实现简单的消息队列(监听器异步实现)
首先声明:以下内容均是在网上找别人的博客综合学习而成的,可能会发现某些代码与其他博主的相同,由于参考的文章比较多,这里对你们表示感谢,就不一一列举,如果有侵权的地方,请通知我,我可以把该文章删除. 1 ...
- Java虚拟机的内存组成以及堆内存介绍
一.java内存组成介绍:堆(Heap)和非堆(Non-heap)内存 按照官方的说法:“Java 虚拟机具有一个堆,堆是运行时数据区域,所有类实例和数组的内存均从此处分配.堆是在 Java 虚拟机启 ...
- Oracle学习之集合运算
一.集合运算操作符 UNION:(并集)返回两个集合去掉重复值的所有的记录 UNION ALL:(并集)返回两个集合去掉重复值的所有的记录 INTERSECT:(交集)返回两个集合的所有记录,重复 ...
- objcopy
objcopy objcopy [options] infile [outfile] Copy the contents of the input object file to another fil ...
- FileZilla无法确定拖放操作的目标,由于shell未正确安装
天有不测风云,突然间,用filezilla下载ftp上的文件到桌面的时候,提示"无法确定拖放操作目标.由于shell未正确安装" 解决办法很简单,执行如下几步就OK了 1.在CMD ...
- 完全二叉树的高度为什么是对lgN向下取整
完全二叉树的高度为什么是对lgN向下取整呢? 说明一下这里的高度:只有根节点的树高度是0. 设一棵完全二叉树节点个数为N,高度为h.所以总节点个数N满足以下不等式: 1 + 21 + 22 +……+ ...
- codevs 1171 潜伏者
要是NOIP自己这样水就完了... 仔细啊!!!! #include<iostream> #include<cstdio> #include<cstring> #i ...
- MVC&WebForm对照学习:文件下载
说完了WebForm和MVC中的文件上传,就不得不说用户从服务器端下载资源了.那么今天就扯扯在WebForm和MVC中是如何实现文件下载的.说起WebForm中的文件上传,codeshark在他的博文 ...
- lnmp脚本
#!/bin/sh echo "欢迎使用 lnmp 脚本 (fanshengshuai@gmail.com) "; echo "增加资源..."; rpm -i ...
- 【Mac】Mac键盘实现Home, End, Page UP, Page DOWN
* Home键=Fn+左方向 * End键=Fn+右方向 * PageUP=Fn+上方向 * PageDOWN=Fn+下方向 * 向后删除=Fn+delete * Find ...