Description

有一张N×m的数表,其第i行第j列(1 < =i < =n,1 < =j < =m)的数值为
能同时整除i和j的所有自然数之和。给定a,计算数表中不大于a的数之和。

Input

输入包含多组数据。
输入的第一行一个整数Q表示测试点内的数据组数,接下来Q行,每行三个整数n,m,a(|a| < =10^9)描述一组数据。

Output

对每组数据,输出一行一个整数,表示答案模2^31的值。

Sample Input

2

4 4 3

10 10 5

Sample Output

20

148
HINT

1 < =N.m < =10^5 , 1 < =Q < =2×10^4

这个太卡时间了,搞了我好久,不过最后跑了8s,利用了他取模的数,C++正好可以直接爆int,然后小于0就加2的31次方就行了,我就用longint强行截取了后半部分相当于爆int

首先a[i,j]上的数我们可以看成是F[gcd(i,j)],F[i]我们都预处理出来

然后我们要求的就是        ΣF[i]*g[i]     (F[i]<=a,g[i]是gcd=i的个数)

所以我们要求的就是        ΣF[i]*Σtrunc(n/d)*trunc(m/d)*μ(d/i)   (F[i]<=a,i|d)

所以我们要求的就是        Σtrunc(n/d)*trunc(m/d)*ΣF[i]*μ(d/i)   (F[i]<=a,i|d)

因为trunc(n/d)*trunc(m/d)只有根号n级别的个数,所以我们要处理ΣF[i]*μ(d/i)的前缀和,我用的是树状数组

然后每次询问都可以根号n*logn回答了

但是还有一个条件,就是F[i]<=a

前缀和还是动态的,怎么办

首先把F[i]排序是肯定的,对于每一个i,影响到的是他的倍数,这个很麻烦啊

于是就离线做了,把a排序,然后暴力修改前缀和,即枚举倍数

因为排序了,所以我们最多每个i都枚举倍数一次,应该是nlognlogn的

然后就写完了

 const
maxn=;
h=<<;
type
node=record
n,m,a,id:longint;
end;
var
q:array[..maxn]of node;
flag:array[..maxn]of boolean;
p,u,k,f,ans,c:array[..maxn]of longint;
t,tot,max:longint; function min(x,y:longint):longint;
begin
if x<y then exit(x);
exit(y);
end; procedure swap(var x,y:longint);
var
t:longint;
begin
t:=x;x:=y;y:=t;
end; procedure swap(var x,y:node);
var
t:node;
begin
t:=x;x:=y;y:=t;
end; procedure sort(l,r:longint);
var
i,j:longint;
y:int64;
begin
i:=l;
j:=r;
y:=f[k[(l+r)>>]];
repeat
while f[k[i]]<y do
inc(i);
while f[k[j]]>y do
dec(j);
if i<=j then
begin
swap(k[i],k[j]);
inc(i);
dec(j);
end;
until i>j;
if i<r then sort(i,r);
if j>l then sort(l,j);
end; procedure pre;
var
i,j,s:longint;
begin
f[]:=;
u[]:=;
for i:= to max do
begin
if flag[i]=false then
begin
inc(tot);
p[tot]:=i;
f[i]:=i+;
u[i]:=-;
end;
for j:= to tot do
begin
if int64(i)*p[j]>max then break;
flag[i*p[j]]:=true;
if i mod p[j]= then
begin
s:=p[j];
while i mod (int64(s)*p[j])= do
s:=s*p[j];
if s=i then f[i*p[j]]:=(s*p[j]*p[j]-)div(p[j]-)
else f[i*p[j]]:=f[i div s]*f[s*p[j]];
break;
end
else
begin
f[i*p[j]]:=f[i]*(p[j]+);
u[i*p[j]]:=-u[i];
end;
end;
end;
for i:= to max do
k[i]:=i;
sort(,max);
end; procedure sort2(l,r:longint);
var
i,j,y:longint;
begin
i:=l;
j:=r;
y:=q[(l+r)>>].a;
repeat
while q[i].a<y do
inc(i);
while q[j].a>y do
dec(j);
if i<=j then
begin
swap(q[i],q[j]);
inc(i);
dec(j);
end;
until i>j;
if i<r then sort2(i,r);
if j>l then sort2(l,j);
end; procedure init;
var
i:longint;
begin
read(t);
for i:= to t do
begin
read(q[i].n,q[i].m,q[i].a);
q[i].id:=i;
if q[i].n>q[i].m then swap(q[i].n,q[i].m);
if max<q[i].n then max:=q[i].n;
end;
sort2(,t);
end; procedure add(x,y:longint);
begin
while x<= do
begin
c[x]:=longint(int64(c[x])+y);
x:=x+(x and (-x));
end;
end; function sum(x:longint):longint;
begin
sum:=;
while x> do
begin
sum:=longint(int64(sum)+c[x]);
x:=x-(x and (-x));
end;
end; procedure main;
var
i,j,kk,s,lasta,s1,s2:longint;
begin
lasta:=;
for i:= to t do
begin
while (lasta<=max) and (f[k[lasta]]<=q[i].a) do
begin
s:=k[lasta];
j:=;
while s<=max do
begin
if u[j]<> then add(s,f[k[lasta]]*u[j]);
inc(s,k[lasta]);
inc(j);
end;
inc(lasta);
end;
kk:=;
while kk<=q[i].n do
begin
s1:=q[i].n div kk;
s2:=q[i].m div kk;
s:=min(trunc(q[i].n/s1),trunc(q[i].m/s2));
ans[q[i].id]:=longint(int64(ans[q[i].id])+int64(longint(int64(s1)*s2))*longint(int64(sum(s))-sum(kk-)));
kk:=s+;
end;
end;
for i:= to t do
if ans[i]< then writeln(ans[i]+h)
else writeln(ans[i]);
end; begin
init;
pre;
main;
end.

3529: [Sdoi2014]数表 - BZOJ的更多相关文章

  1. BZOJ 3529: [Sdoi2014]数表 [莫比乌斯反演 树状数组]

    3529: [Sdoi2014]数表 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 1399  Solved: 694[Submit][Status] ...

  2. bzoj 3529 [Sdoi2014]数表(莫比乌斯反演+BIT)

    Description 有一张N×m的数表,其第i行第j列(1 < =i < =礼,1 < =j < =m)的数值为能同时整除i和j的所有自然数之和.给定a,计算数表中不大于a ...

  3. ●BZOJ 3529 [Sdoi2014]数表

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=3529 题解: 莫比乌斯反演. 按题目的意思,令$f(i)$表示i的所有约数的和,就是要求: ...

  4. 【刷题】BZOJ 3529 [Sdoi2014]数表

    Description 有一张n×m的数表,其第i行第j列(1<=i<=n,1<=j<=m)的数值为能同时整除i和j的所有自然数之和.给定a,计算数表中不大于a的数之和. In ...

  5. BZOJ 3529 [Sdoi2014]数表 (莫比乌斯反演+树状数组+离线)

    题目大意:有一张$n*m$的数表,第$i$行第$j$列的数是同时能整除$i,j$的所有数之和,求数表内所有不大于A的数之和 先是看错题了...接着看对题了发现不会做了...刚了大半个下午无果 看了Po ...

  6. bzoj 3529: [Sdoi2014]数表

    #include<cstdio> #include<iostream> #include<algorithm> #define M 200009 //#define ...

  7. 【BZOJ】3529: [Sdoi2014]数表

    题意:求 $$\sum_{i=1}^{n} \sum_{j=1}^{m} \sum_{d|(i, j)} d 且 (\sum_{d|(i, j)} d)<=a$$ n, m<=1e5,q次 ...

  8. BZOJ 3529 [Sdoi2014]数表 ——莫比乌斯反演 树状数组

    $ans=\sum_{i=1}^n\sum_{j=1}^n\sigma(gcd(i,j))$ 枚举gcd为d的所有数得到 $ans=\sum_{d<=n}\sigma(d)*g(d)$ $g(d ...

  9. 【BZOJ 3529】 [Sdoi2014]数表 (莫比乌斯+分块+离线+树状数组)

    3529: [Sdoi2014]数表 Description 有一张N×m的数表,其第i行第j列(1 < =i < =礼,1 < =j < =m)的数值为能同时整除i和j的所有 ...

随机推荐

  1. Part 11 Search filter in AngularJS

    As we type in the search textbox, all the columns in the table must be searched and only the matchin ...

  2. PHP 创建重用数据库连接函数 mysqli与PDO

    代码如下: 有兴趣的可以测试下 摘自于某书 <? php public function dbConnect( $usertype, $connectionType = 'mysqli' ) { ...

  3. MYSQL多实例配置与使用教程

    原文http://www.111cn.net/database/mysql/58651.htm 在实际的开发过程中,可能会需要在一台服务器上部署多个MYSQL实例,那建议使用MYSQL官方的解决方案 ...

  4. 使用命令修改ip地址

    简述:以serverv 2012 r2为例 常用的几种,当然不全,希望能较快的速率记下一种便可 直接配置 1.      查看网卡的显示名称 2.      配置静态iP地址 3.      查看配置 ...

  5. Java关键字及其作用

    Java关键字及其作用 一. 关键字总览 访问控制 private protected public             类,方法和变量修饰符 abstract class extends fin ...

  6. 推荐最近使用的一个APP

    最近使用一个APP叫做得到,觉得很不错,将一些很好的思想提炼出来,然后语音表达,放松眼睛,聆听收获.

  7. 如何查找在CDN下的真实ip

    今天去找了一下www.bilibili.tv的IP(为什么要这样子做见),发现www.bilibili.tv使用了CDN服务直接ping找不到其真实IP(实际上不用找也可以但就是想找一下). 那我们应 ...

  8. Python深拷贝和浅拷贝

    1- Python引用计数[1] 1.1 引用计数机制 引用计数是计算机编程语言中的一种内存管理技术,是指将资源(可以是对象.内存或磁盘空间等等)的被引用次数保存起来,当被引用次数变为零时就将其释放的 ...

  9. zedboard U盘挂载+交叉编译helloworld

    交叉编译环境见http://blog.csdn.net/xiabodan/article/details/22717175 1:编写hello.c文件 #include<stdio.h> ...

  10. WCF 配置文件(三)

    配置文件概述 WCF服务配置是WCF服务编程的主要部分.WCF作为分布式开发的基础框架,在定义服务以及定义消费服务的客户端时,都使用了配置文件的方法.虽然WCF也提供硬编程的方式,通过在代码中直接设置 ...