Description

有一张N×m的数表,其第i行第j列(1 < =i < =n,1 < =j < =m)的数值为
能同时整除i和j的所有自然数之和。给定a,计算数表中不大于a的数之和。

Input

输入包含多组数据。
输入的第一行一个整数Q表示测试点内的数据组数,接下来Q行,每行三个整数n,m,a(|a| < =10^9)描述一组数据。

Output

对每组数据,输出一行一个整数,表示答案模2^31的值。

Sample Input

2

4 4 3

10 10 5

Sample Output

20

148
HINT

1 < =N.m < =10^5 , 1 < =Q < =2×10^4

这个太卡时间了,搞了我好久,不过最后跑了8s,利用了他取模的数,C++正好可以直接爆int,然后小于0就加2的31次方就行了,我就用longint强行截取了后半部分相当于爆int

首先a[i,j]上的数我们可以看成是F[gcd(i,j)],F[i]我们都预处理出来

然后我们要求的就是        ΣF[i]*g[i]     (F[i]<=a,g[i]是gcd=i的个数)

所以我们要求的就是        ΣF[i]*Σtrunc(n/d)*trunc(m/d)*μ(d/i)   (F[i]<=a,i|d)

所以我们要求的就是        Σtrunc(n/d)*trunc(m/d)*ΣF[i]*μ(d/i)   (F[i]<=a,i|d)

因为trunc(n/d)*trunc(m/d)只有根号n级别的个数,所以我们要处理ΣF[i]*μ(d/i)的前缀和,我用的是树状数组

然后每次询问都可以根号n*logn回答了

但是还有一个条件,就是F[i]<=a

前缀和还是动态的,怎么办

首先把F[i]排序是肯定的,对于每一个i,影响到的是他的倍数,这个很麻烦啊

于是就离线做了,把a排序,然后暴力修改前缀和,即枚举倍数

因为排序了,所以我们最多每个i都枚举倍数一次,应该是nlognlogn的

然后就写完了

 const
maxn=;
h=<<;
type
node=record
n,m,a,id:longint;
end;
var
q:array[..maxn]of node;
flag:array[..maxn]of boolean;
p,u,k,f,ans,c:array[..maxn]of longint;
t,tot,max:longint; function min(x,y:longint):longint;
begin
if x<y then exit(x);
exit(y);
end; procedure swap(var x,y:longint);
var
t:longint;
begin
t:=x;x:=y;y:=t;
end; procedure swap(var x,y:node);
var
t:node;
begin
t:=x;x:=y;y:=t;
end; procedure sort(l,r:longint);
var
i,j:longint;
y:int64;
begin
i:=l;
j:=r;
y:=f[k[(l+r)>>]];
repeat
while f[k[i]]<y do
inc(i);
while f[k[j]]>y do
dec(j);
if i<=j then
begin
swap(k[i],k[j]);
inc(i);
dec(j);
end;
until i>j;
if i<r then sort(i,r);
if j>l then sort(l,j);
end; procedure pre;
var
i,j,s:longint;
begin
f[]:=;
u[]:=;
for i:= to max do
begin
if flag[i]=false then
begin
inc(tot);
p[tot]:=i;
f[i]:=i+;
u[i]:=-;
end;
for j:= to tot do
begin
if int64(i)*p[j]>max then break;
flag[i*p[j]]:=true;
if i mod p[j]= then
begin
s:=p[j];
while i mod (int64(s)*p[j])= do
s:=s*p[j];
if s=i then f[i*p[j]]:=(s*p[j]*p[j]-)div(p[j]-)
else f[i*p[j]]:=f[i div s]*f[s*p[j]];
break;
end
else
begin
f[i*p[j]]:=f[i]*(p[j]+);
u[i*p[j]]:=-u[i];
end;
end;
end;
for i:= to max do
k[i]:=i;
sort(,max);
end; procedure sort2(l,r:longint);
var
i,j,y:longint;
begin
i:=l;
j:=r;
y:=q[(l+r)>>].a;
repeat
while q[i].a<y do
inc(i);
while q[j].a>y do
dec(j);
if i<=j then
begin
swap(q[i],q[j]);
inc(i);
dec(j);
end;
until i>j;
if i<r then sort2(i,r);
if j>l then sort2(l,j);
end; procedure init;
var
i:longint;
begin
read(t);
for i:= to t do
begin
read(q[i].n,q[i].m,q[i].a);
q[i].id:=i;
if q[i].n>q[i].m then swap(q[i].n,q[i].m);
if max<q[i].n then max:=q[i].n;
end;
sort2(,t);
end; procedure add(x,y:longint);
begin
while x<= do
begin
c[x]:=longint(int64(c[x])+y);
x:=x+(x and (-x));
end;
end; function sum(x:longint):longint;
begin
sum:=;
while x> do
begin
sum:=longint(int64(sum)+c[x]);
x:=x-(x and (-x));
end;
end; procedure main;
var
i,j,kk,s,lasta,s1,s2:longint;
begin
lasta:=;
for i:= to t do
begin
while (lasta<=max) and (f[k[lasta]]<=q[i].a) do
begin
s:=k[lasta];
j:=;
while s<=max do
begin
if u[j]<> then add(s,f[k[lasta]]*u[j]);
inc(s,k[lasta]);
inc(j);
end;
inc(lasta);
end;
kk:=;
while kk<=q[i].n do
begin
s1:=q[i].n div kk;
s2:=q[i].m div kk;
s:=min(trunc(q[i].n/s1),trunc(q[i].m/s2));
ans[q[i].id]:=longint(int64(ans[q[i].id])+int64(longint(int64(s1)*s2))*longint(int64(sum(s))-sum(kk-)));
kk:=s+;
end;
end;
for i:= to t do
if ans[i]< then writeln(ans[i]+h)
else writeln(ans[i]);
end; begin
init;
pre;
main;
end.

3529: [Sdoi2014]数表 - BZOJ的更多相关文章

  1. BZOJ 3529: [Sdoi2014]数表 [莫比乌斯反演 树状数组]

    3529: [Sdoi2014]数表 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 1399  Solved: 694[Submit][Status] ...

  2. bzoj 3529 [Sdoi2014]数表(莫比乌斯反演+BIT)

    Description 有一张N×m的数表,其第i行第j列(1 < =i < =礼,1 < =j < =m)的数值为能同时整除i和j的所有自然数之和.给定a,计算数表中不大于a ...

  3. ●BZOJ 3529 [Sdoi2014]数表

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=3529 题解: 莫比乌斯反演. 按题目的意思,令$f(i)$表示i的所有约数的和,就是要求: ...

  4. 【刷题】BZOJ 3529 [Sdoi2014]数表

    Description 有一张n×m的数表,其第i行第j列(1<=i<=n,1<=j<=m)的数值为能同时整除i和j的所有自然数之和.给定a,计算数表中不大于a的数之和. In ...

  5. BZOJ 3529 [Sdoi2014]数表 (莫比乌斯反演+树状数组+离线)

    题目大意:有一张$n*m$的数表,第$i$行第$j$列的数是同时能整除$i,j$的所有数之和,求数表内所有不大于A的数之和 先是看错题了...接着看对题了发现不会做了...刚了大半个下午无果 看了Po ...

  6. bzoj 3529: [Sdoi2014]数表

    #include<cstdio> #include<iostream> #include<algorithm> #define M 200009 //#define ...

  7. 【BZOJ】3529: [Sdoi2014]数表

    题意:求 $$\sum_{i=1}^{n} \sum_{j=1}^{m} \sum_{d|(i, j)} d 且 (\sum_{d|(i, j)} d)<=a$$ n, m<=1e5,q次 ...

  8. BZOJ 3529 [Sdoi2014]数表 ——莫比乌斯反演 树状数组

    $ans=\sum_{i=1}^n\sum_{j=1}^n\sigma(gcd(i,j))$ 枚举gcd为d的所有数得到 $ans=\sum_{d<=n}\sigma(d)*g(d)$ $g(d ...

  9. 【BZOJ 3529】 [Sdoi2014]数表 (莫比乌斯+分块+离线+树状数组)

    3529: [Sdoi2014]数表 Description 有一张N×m的数表,其第i行第j列(1 < =i < =礼,1 < =j < =m)的数值为能同时整除i和j的所有 ...

随机推荐

  1. Android-多平台分享(新浪微博)

    很多时候,我们都会用到分享,比如说逛淘宝时,看中一件衣服,想要给小伙伴看看,我会将这件宝贝分享给我的小伙伴,当然,分享的平台就有很多啦,我分享他微信.QQ.或者微博都是可以,但是本人最喜欢微信分享啦 ...

  2. php学习笔记4--php中的变量作用域

    变量作用域:可以简单地理解为变量的可见区域,变量能被访问的范围.如同其他语言,php中也有全局作用域和局部作用域之分,但是不同的是:php中的全局作用域指的是:只能在函数外部使用,而局部作用域指的是: ...

  3. SQL Server 添加登录账户配置权限

    一.新建登录名 1. 在登录名右侧的文本框中输入新建的管理员账号名称:2. 一对单选按钮组中,选择Sql Server 身份验证,并输入登录密码:3. 勾选强制实施密码策略复选框:(密码策略一般是指加 ...

  4. 【转】K3Cloud 二次开发 单据转换系列

    Entity, EntryEntity, SubEntryEntity 这三个对象具有继承关系:Entity 是实体基类,用于定义各种实体的公共属性:EntryEntity 是单据体实体类,从Enti ...

  5. 英特尔® 实感™ SDK 前置摄像头 (F200) 常见问题解答

    原文地址 https://software.intel.com/zh-cn/articles/intel-realsense-sdk-faq-for-front-facing-camera-f200? ...

  6. javascript 操作复选框无效

    <script type="text/javascript"> // 操作checkbox复选框按钮 var inputs = $('#article_list').f ...

  7. Cocos2d-x文本菜单

    文本菜单是菜单项只是显示文本,文本菜单类包括了MenuItemLabel.MenuItemFont和MenuItemAtlasFont.MenuItemLabel是个抽象类,具体使用的时候是使用Men ...

  8. UI4_UITableViewEdit

    // // AppDelegate.m // UI4_UITableViewEdit // // Created by zhangxueming on 15/7/13. // Copyright (c ...

  9. HTTP状态码参考

    1. HTTP状态码意义 客户机与服务器建立连接后,发送一个请求给服务器(如:Get /index.html http/1.1),在服务器接到请求后,给予客户机相应的响应信息,包括该信息的协议版本号. ...

  10. 继承关系在内存和DB中的映射

    使用 将若干相似的类映射为单表,对拥有许多特殊数据的类使用具体表继承. 对高层次使用类表继承,对低层次使用具体表继承. Single Table Inheritance 在DB中将类继承层次设计为一个 ...