bzoj2561: 最小生成树
如果出现在最小生成树上,那么此时比该边权值小的边无法连通uv。据此跑最小割(最大流)即可。
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define rep(i,n) for(int i=1;i<=n;i++)
#define clr(x,c) memset(x,c,sizeof(x))
int read(){
int x=0;char c=getchar();bool f=true;
while(!isdigit(c)) {
if(c=='-') f=false;c=getchar();
}
while(isdigit(c)) x=x*10+c-'0',c=getchar();
return f?x:-x;
}
const int nmax=20005;
const int maxn=200005;
const int inf=0x7f7f7f7f;
struct Edge{
int from,to,cap;
bool operator<(const Edge&rhs)const{
return cap<rhs.cap;}
};
Edge Edges[maxn];
struct edge{
int to,cap;edge *next,*rev;
};
edge edges[maxn<<2],*pt,*head[nmax],*p[nmax],*cur[nmax];
void add(int u,int v,int d){
pt->to=v;pt->cap=d;pt->next=head[u];head[u]=pt++;
}
void adde(int u,int v,int d){
add(u,v,d);add(v,u,0);head[u]->rev=head[v];head[v]->rev=head[u];
}
int cnt[nmax],h[nmax];
int maxflow(int s,int t,int n){
clr(cnt,0);clr(h,0);cnt[0]=n;
int flow=0,a=inf,x=s;edge *e;
while(h[s]<n){
for(e=cur[x];e;e=e->next) if(e->cap>0&&h[e->to]+1==h[x]) break;
if(e){
p[e->to]=cur[x]=e;a=min(a,e->cap);x=e->to;
if(x==t){
while(x!=s) p[x]->rev->cap+=a,p[x]->cap-=a,x=p[x]->rev->to;
flow+=a,a=inf;
}
}else{
if(!--cnt[h[x]]) break;
h[x]=n;
for(e=head[x];e;e=e->next) if(e->cap>0&&h[e->to]+1<h[x]) h[x]=h[e->to]+1,cur[x]=e;
cnt[h[x]]++;
if(x!=s) x=p[x]->rev->to;
}
}
return flow;
}
int main(){
int n=read(),m=read(),s,t,d;
rep(i,m) Edges[i].from=read(),Edges[i].to=read(),Edges[i].cap=read();
s=read(),t=read(),d=read();
sort(Edges+1,Edges+m+1);
// rep(i,m) printf("%d %d %d\n",Edges[i].from,Edges[i].to,Edges[i].cap);
pt=edges;clr(head,0);
rep(i,m){
if(Edges[i].cap>=d) break;
Edge&o=Edges[i];adde(o.from,o.to,1);adde(o.to,o.from,1);
}
int ans=maxflow(s,t,n);
pt=edges;clr(head,0);
for(int i=m;i;i--){
if(Edges[i].cap<=d) break;
Edge&o=Edges[i];adde(o.from,o.to,1);adde(o.to,o.from,1);
}
ans+=maxflow(s,t,n);
printf("%d\n",ans);
return 0;
}
2561: 最小生成树
Time Limit: 10 Sec Memory Limit: 128 MB
Submit: 1459 Solved: 716
[Submit][Status][Discuss]
Description
给定一个边带正权的连通无向图G=(V,E),其中N=|V|,M=|E|,N个点从1到N依次编号,给定三个正整数u,v,和L (u≠v),假设现在加入一条边权为L的边(u,v),那么需要删掉最少多少条边,才能够使得这条边既可能出现在最小生成树上,也可能出现在最大生成树上?
Input
接下来M行,每行包含三个正整数u,v和w表示图G存在一条边权为w的边(u,v)。
最后一行包含用空格隔开的三个整数,分别为u,v,和 L;
数据保证图中没有自环。
Output
输出一行一个整数表示最少需要删掉的边的数量。
Sample Input
3 2 1
1 2 3
1 2 2
Sample Output
HINT
对于20%的数据满足N ≤ 10,M ≤ 20,L ≤ 20;
对于50%的数据满足N ≤ 300,M ≤ 3000,L ≤ 200;
对于100%的数据满足N ≤ 20000,M ≤ 200000,L ≤ 20000。
Source
bzoj2561: 最小生成树的更多相关文章
- bzoj2561最小生成树
bzoj2561最小生成树 题意: 给定一个连通无向图,假设现在加入一条边权为L的边(u,v),求需要删掉最少多少条边,才能够使得这条边既可能出现在最小生成树上,也可能出现在最大生成树上. 题解: 最 ...
- BZOJ2561 最小生成树(最小割)
考虑kruskal的过程:按边权从小到大考虑,如果这条边的两端点当前不连通则将其加入最小生成树.由此可以发现,某条边可以在最小生成树上的充要条件是其两端点无法通过边权均小于它的边连接. 那么现在我们需 ...
- [bzoj2561]最小生成树_网络流_最小割_最小生成树
最小生成树 bzoj-2561 题目大意:题目链接. 注释:略. 想法: 我们发现: 如果一条权值为$L$的边想加入到最小生成树上的话,需要满足一下条件. 就是求出原图的最小生成树之后,这个边当做非树 ...
- BZOJ2561最小生成树——最小割
题目描述 给定一个边带正权的连通无向图G=(V,E),其中N=|V|,M=|E|,N个点从1到N依次编号,给定三个正整数u,v,和L (u≠v),假设现在加入一条边权为L的边(u,v),那么需要删掉最 ...
- bzoj千题计划322:bzoj2561: 最小生成树(最小割)
https://www.lydsy.com/JudgeOnline/problem.php?id=2561 考虑Kruscal算法求最小生成树的流程 如果 u和v之间的长为L的边能出现在最小生成树里, ...
- BZOJ2561 最小生成树 【最小割】
题目 给定一个边带正权的连通无向图G=(V,E),其中N=|V|,M=|E|,N个点从1到N依次编号,给定三个正整数u,v,和L (u≠v),假设现在加入一条边权为L的边(u,v),那么需要删掉最少多 ...
- 【BZOJ2561】最小生成树 最小割
[BZOJ2561]最小生成树 Description 给定一个边带正权的连通无向图G=(V,E),其中N=|V|,M=|E|,N个点从1到N依次编号,给定三个正整数u,v,和L (u≠v),假设现在 ...
- 【bzoj2561】最小生成树 网络流最小割
题目描述 给定一个边带正权的连通无向图G=(V,E),其中N=|V|,M=|E|,N个点从1到N依次编号,给定三个正整数u,v,和L (u≠v),假设现在加入一条边权为L的边(u,v),那么需要删掉最 ...
- 【bzoj2561】最小生成树
嗯……这题是一个网络流. 加入的边为u,v长度L 则所有长度大于L的边不能使得u,v连通 求个最小割即可.小于同理 两次最小割结果相加. #include<bits/stdc++.h> # ...
随机推荐
- ffmpeg 从视频流中抓取图片
从视频中不断抓取图片的基本流程:打开视频流地址->获取视频流packt->解码成图片帧->输出图片 一.初始化Ffmpeg void ffmpegInit(){ av_registe ...
- 【转载】错误 CS0016: 未能写入输出文件“c:/WINDOWS/Microsoft.NET/Framework/v2.0.50727/Temporary ASP.NET Files/.........dll”--“拒绝访问。 ”
win7中安装asp.net的问题 编译器错误信息: CS0016: 未能写入输出文件问题解决办法 编译错误 说明: 在编译向该请求提供服务所需资源的过程中出现错误.请检查下列特定错误详细信息并适当地 ...
- JAVA Hibernate工作原理及为什么要用(转)
hibernate 简介:hibernate是一个开源框架,它是对象关联关系映射的框架,它对JDBC做了轻量级的封装,而我们java程序员可以使用面向对象的思想来操纵数据库.hibernate核心接口 ...
- unity调用MMBilling_2.4.2 Android SDK.
原地址:http://www.cnblogs.com/ayanmw/p/3736284.html 项目要使用android 的移动支付SDK 应用内付费[http://dev.10086.cn/wik ...
- 谁会是 Zabbix 和 Nagios 的继任者?
[编者按]本文根据 Dataloop.IO 的创始人兼 CEO David Gildeh 对监控工具市场的现状分析以及对未来发展趋势的展望,展开拓展讨论. 为什么监控还是一塌糊涂? 为了调研市场,从而 ...
- 递归算法实现10进制到N进制的转换
#include<iostream> using namespace std; int BaseTrans(int data,int B){ int s; ) ; //结束递归算法 s=d ...
- 核稀疏表示分类(KSRC)
参考:<Kernel SparseRepresention-Based Classifier> 原文地址:http://www.cnblogs.com/Rosanna/p/3372153. ...
- autocomplete参数说明以及实例
JQuery autocomplete使用手册 Jquery autocomplete是一个很强大的类似google suggest的自动提示插件.它几乎可以满足我们所有的需要. 官方网站:http: ...
- Project Euler 92:Square digit chains 平方数字链
题目 Square digit chains A number chain is created by continuously adding the square of the digits in ...
- Project Euler 95:Amicable chains 亲和数链
Amicable chains The proper divisors of a number are all the divisors excluding the number itself. Fo ...