明显是一个差分约束系统

对于第一种限制,其实就是x[a]+1<=x[b] x[b]-1<=x[a]

根据三角不等式很容易建图

但这题他比较奇怪,问的是X最多不同取值的个数

根据这张图的特殊性我们不难发现,两个强联通分量内X的取值种类是互不干涉的

也就是说我们可以分别统计每个强联通分量然后累计即可

为什么这样呢?观察这个限制,两个强联通分量之间只可能存在第二种限制的单向边,xc<=xd 显然xc,xd可以取不同取值

怎么统计强联通分量内的答案呢?

首先对于差分约束系统的可行解是最长路,每块的答案就是点与点之间距离绝对值的最大值

注意无解就是存在正环

 const inf=;
type node=record
po,next:longint;
end; var e:array[..] of node;
st,q,p,dfn,low:array[..] of longint;
d:array[..,..] of longint;
v,f:array[..] of boolean;
h,s,ans,x,y,len,j,t,i,n,m1,m2:longint; procedure max(var a:longint;b:longint);
begin
if b>a then a:=b;
end; function min(a,b:longint):longint;
begin
if a>b then exit(b) else exit(a);
end; procedure add(x,y:longint);
begin
inc(len);
e[len].po:=y;
e[len].next:=p[x];
p[x]:=len;
end; procedure floyd;
var i,j,k:longint;
begin
for k:= to s do
for i:= to s do
if d[q[i],q[k]]>-inf then
for j:= to s do
if d[q[k],q[j]]>-inf then
max(d[q[i],q[j]],d[q[i],q[k]]+d[q[k],q[j]]);
for i:= to s do
if d[q[i],q[i]]> then
begin
writeln('NIE');
halt;
end; k:=;
for i:= to s do
for j:= to s do
if d[q[i],q[j]]>-inf then max(k,abs(d[q[i],q[j]]));
ans:=ans+k+;
end; procedure dfs(x:longint);
var i,y:longint;
begin
inc(h);
dfn[x]:=h;
low[x]:=h;
v[x]:=true;
inc(t);
st[t]:=x;
f[x]:=true;
i:=p[x];
while i<> do
begin
y:=e[i].po;
if not v[y] then
begin
dfs(y);
low[x]:=min(low[x],low[y]);
end
else if f[y] then low[x]:=min(low[x],low[y]);
i:=e[i].next;
end;
if dfn[x]=low[x] then
begin
s:=;
while st[t+]<>x do
begin
inc(s);
q[s]:=st[t];
f[st[t]]:=false;
dec(t);
end;
floyd;
end;
end; begin
readln(n,m1,m2);
for i:= to n do
for j:= to n do
if i<>j then d[i,j]:=-inf;
for i:= to m1 do
begin
readln(x,y);
add(x,y);
add(y,x);
max(d[x,y],);
max(d[y,x],-);
end;
for i:= to m2 do
begin
readln(x,y);
add(x,y);
max(d[x,y],);
end;
for i:= to n do
if not v[i] then
begin
h:=;
t:=;
dfs(i);
end; writeln(ans);
end.

bzoj2788的更多相关文章

  1. 【bzoj2788】Festival

    Portal --> bzoj2788 Description 有\(n\)个正整数\(X_1,X_2,...,X_n\),再给出\(m1+m2\)个限制条件,限制分为两类: 1.给出\(a,b ...

  2. [BZOJ2788][Poi2012]Festival

    2788: [Poi2012]Festival Time Limit: 30 Sec  Memory Limit: 64 MBSubmit: 187  Solved: 91[Submit][Statu ...

  3. POI2012题解

    POI2012题解 这次的完整的\(17\)道题哟. [BZOJ2788][Poi2012]Festival 很显然可以差分约束建图.这里问的是变量最多有多少种不同的取值. 我们知道,在同一个强连通分 ...

随机推荐

  1. Java 8 VM GC Tunning Guide Charter 6

    第六章 并行GC The Parallel Collector The parallel collector (also referred to here as the throughput coll ...

  2. CSS学习------之简单图片切换

    最近一直在重温纯CSS,学习的时候真的才发现,css真的博大精深啊! 所以趁着学习的劲头,谢了个最简单的CSS图片切换! 先整理下思路: 首先我希望图片居中间,两边有个切换按钮,点击按钮的时候,可以实 ...

  3. ios开发小技巧之提示音播放与震动

    在ios开发中,有时候我们需要频繁播放某种提示声音,比如微博刷新提示音.QQ消息提示音等,对于这些短小且需要频繁播放的音频,最好将其加入到系统声音(system sound)里. 注意: 需要播放的音 ...

  4. linux源代码阅读笔记 get_free_page()代码分析

    /* 34 * Get physical address of first (actually last :-) free page, and mark it 35 * used. If no fre ...

  5. linux源代码阅读笔记 linux文件系统(二)

    上一篇文章说到linux文件系统中分为超级块,inode块,block块.inode块给出文件的权限,修改时间,大小等信息. 但是实际上,文件的数据是存储在block块中的.而inode块中给出了存储 ...

  6. SNAT

    http://blog.chinaunix.net/uid-2628744-id-2454879.html

  7. TCP 流模式与UDP数据报模式(转)

    TCP流模式与UDP数据报模式http://blog.csdn.net/s3olo/article/details/7914717 数据报(datagram)通常是指起始点和目的地都使用无连接网络服务 ...

  8. 【转载】Dom篇

    一. 初探Dom     1. Dom介绍 二. Dom基础     1. window顶级对象     2. body.document对象事件     3. 通用的HTML元素的事件     4. ...

  9. http://www.cnblogs.com/huangcong/archive/2010/06/14/1757957.html

    http://www.cnblogs.com/huangcong/archive/2010/06/14/1757957.html http://www.cnblogs.com/langtianya/a ...

  10. Perl 三种时间time,localtime,gmttime

    #!/usr/bin/perl use warnings; use diagnostics; use strict; use POSIX; print "time: ", time ...