题意:

给出N和M,统计区间x ∈ [2, N!],x满足所有素因子都大于M的x的个数。

分析:

首先将问题转化一下,所有素因子都大于M 等价于 这个数与M!互素

对于k大于M!,k与M!互素等价于 k % M! 与 M!互素

所以我们可以求出φ(M!)(φ为欧拉函数) 然后乘以N! / M!,最后答案再减一(因为是从2开始统计的)

欧拉函数的公式为a

phifac[n] = φ(n!),我们递推求phifac

当n为合数时,n!和(n-1)!的素因数的集合是一样的,所以phifac[n] = n * phifac[n-1]

当n为素数是,n!中多了一个素因子n,公式中也多了一项(1 - 1/n),所以phifac[n] = n * (n-1) / n * phifac[n-1] = (n-1) * phifac[n-1]

 #include <cstdio>
#include <cmath> const int maxn = + ;
const int MOD = ;
int phifac[maxn];
bool vis[maxn]; void sieve(int n)
{
int m = sqrt(n + 0.5);
for(int i = ; i <= m; ++i) if(!vis[i])
for(int j = i*i; j <= n; j += i)
vis[j] = true;
} int main()
{
sieve();
phifac[] = phifac[] = ;
for(int i = ; i <= ; ++i)
phifac[i] = (long long) phifac[i-] * (vis[i] ? i : i-) % MOD; int n, m;
while(scanf("%d%d", &n, &m) == )
{
if(n == && m == ) break;
int ans = phifac[m];
for(int i = m+; i <= n; ++i) ans = (long long)ans * i % MOD;
printf("%d\n", (ans-+MOD)%MOD);
} return ;
}

代码君

UVa 11440 (欧拉函数) Help Tomisu的更多相关文章

  1. UVa 11426 (欧拉函数 GCD之和) GCD - Extreme (II)

    题意: 求sum{gcd(i, j) | 1 ≤ i < j ≤ n} 分析: 有这样一个很有用的结论:gcd(x, n) = i的充要条件是gcd(x/i, n/i) = 1,因此满足条件的x ...

  2. UVa 10837 (欧拉函数 搜索) A Research Problem

    发现自己搜索真的很弱,也许做题太少了吧.代码大部分是参考别人的,=_=|| 题意: 给出一个phi(n),求最小的n 分析: 回顾一下欧拉函数的公式:,注意这里的Pi是互不相同的素数,所以后面搜索的时 ...

  3. UVA 10820 欧拉函数模板题

    这道题就是一道简单的欧拉函数模板题,需要注意的是,当(1,1)时只有一个,其他的都有一对.应该对欧拉函数做预处理,显然不会超时. #include<iostream> #include&l ...

  4. UVA 11426 (欧拉函数&&递推)

    题意:给你一个数N,求N以内和N的最大公约数的和 解题思路: 一开始直接想暴力做,4000000的数据量肯定超时.之后学习了一些新的操作. 题目中所要我们求的是N内gcd之和,设s[n]=s[n-1] ...

  5. UVA - 11426 欧拉函数(欧拉函数表)

    题意: 给一个数 N ,求 N 范围内所有任意两个数的最大公约数的和. 思路: f 数组存的是第 n 项的 1~n-1 与 n 的gcd的和,sum数组存的是 f 数组的前缀和. sum[n]=f[1 ...

  6. Trees in a Wood. UVA 10214 欧拉函数或者容斥定理 给定a,b求 |x|<=a, |y|<=b这个范围内的所有整点不包括原点都种一棵树。求出你站在原点向四周看到的树的数量/总的树的数量的值。

    /** 题目:Trees in a Wood. UVA 10214 链接:https://vjudge.net/problem/UVA-10214 题意:给定a,b求 |x|<=a, |y|&l ...

  7. GCD - Extreme (II) UVA - 11426 欧拉函数_数学推导

    Code: #include<cstdio> using namespace std; const int maxn=4000005; const int R=4000002; const ...

  8. 紫书 习题 10-18 UVa 10837 (欧拉函数变形)

    这道题很巧妙,要把式子变一下 phi(n) = n * (1 - 1 / p1) * (1 - 1 / p2)--(1 - 1 / pr) = n * ((p1-1) / p1) * ((p1-2) ...

  9. Trees in a Wood UVA - 10214 欧拉函数模板

    太坑惹,,,没用longlong各种WA #include <iostream> #include <string.h> #include <cstdio> #in ...

随机推荐

  1. Demo学习: ColumnSort

    ColumnSort 设置UniDGGrid点击表头时排序,设置方法比较麻烦且不通用,在实际开发中用处不大. 自己在项目中用了一个比较笨的办法,写了一个函数通过sql来排序: procedure TM ...

  2. UVA 11059

    Given a sequence of integers S = {S1, S2, . . . , Sn}, you should determine what is the value of the ...

  3. POJ 3701 概率DP

    给定2^n 支足球队进行比赛,n<=7. 队伍两两之间有一个获胜的概率,求每一个队伍赢得最后比赛的概率是多少? 状态其实都是很显然的,一开始觉得这个问题很难啊,不会.dp[i][j] 表示第i支 ...

  4. sql之表连接和group by +组函数的分析

    1.首先我们来先看一个简单的例子: 有[Sales.Orders]订单表和[Sales.Customers]顾客表,表的机构如下 业务要求:筛选  来自“按时打算”国家的用户以及所下的订单数 sele ...

  5. android项目在eclipse下编译运行的问题

    JDK与电脑系统要匹配,都是32位或者64位: android工程要与JDK相匹配,如果之前的android工程使用的jdk版本较高,则可能出现一些包或者类.方法.属性对应不上而报错,Android ...

  6. jasper ireport create a report with parameters without sql query

    I'm new in jasper ireport , and I want to know if it is possible to create a report only with static ...

  7. ***用php的strpos() 函数判断字符串中是否包含某字符串的方法

    判断某字符串中是否包含某字符串的方法 if(strpos('www.idc-gz.com','idc-gz') !== false){ echo '包含'; }else{ echo '不包含'; } ...

  8. ***SQL统计语句总结(运用场景:运营分析,财务分析等)

    -- 统计三月的每天的数据量 ,) ,) ; --统计从5月19到6月29的数据量 , ) AS '日期', count(*) AS '医说数' FROM xm_feed a WHERE a.feed ...

  9. redis 参考

    http://redis.readthedocs.org/en/2.4/index.html

  10. [itint5]跳马问题加强版

    http://www.itint5.com/oj/#12 首先由跳马问题一,就是普通的日字型跳法,那么在无限棋盘上,任何点都是可达的.证法是先推出可以由(0,0)到(0,1),那么由对称型等可知任何点 ...