hdu 1695 GCD 莫比乌斯反演入门
GCD
题意:输入5个数a,b,c,d,k;(a = c = 1, 0 < b,d,k <= 100000);问有多少对a <= p <= b, c <= q <= d使得gcd(p,q) = k;
注:对于(p,q)和(q,p)只算一次;
思路:由于遍历朴素求两个数的gcd的时间复杂度为O(n^2*log(n)),朴素算法遍历搜索在判断累加,所以效率很低;
莫比乌斯反演:利用整与分之间的可逆来由整体利用容斥原理得到分量的值;这就是用容易求解的F[n]通过莫比乌斯公式(函数mu[])得到分量f[n]的值;
如本题中:F[n]表示公倍数是n的倍数的个数,f[n]表示公倍数为n的个数;即F[d] = Σf[n] ,(d|n);
同样每个F[d](d|n)中都含有f[n]的分量,所以可以使用容斥原理来求解;对应下面两个公式;
公式1:
公式2:
细节:这道题b,d并不相等,由于只是组合不是排列,这需要两次求之后去重;开始直接线性筛法把mu[]预处理出来即可;
坑:以前线性筛素数,一直用的p[j] < MAXN/i没事,今天各种WA...打击真大。。之后改成p[j]*i < MAXN也没做1LL*处理都没事。。
时间复杂度为:O(n)
#include<iostream>
#include<cstdio>
#include<cstring>
#include<string.h>
#include<algorithm>
#include<vector>
#include<cmath>
#include<stdlib.h>
#include<time.h>
#include<stack>
#include<set>
#include<map>
#include<queue>
using namespace std;
#define rep0(i,l,r) for(int i = (l);i < (r);i++)
#define rep1(i,l,r) for(int i = (l);i <= (r);i++)
#define rep_0(i,r,l) for(int i = (r);i > (l);i--)
#define rep_1(i,r,l) for(int i = (r);i >= (l);i--)
#define MS0(a) memset(a,0,sizeof(a))
#define MS1(a) memset(a,-1,sizeof(a))
#define MSi(a) memset(a,0x3f,sizeof(a))
#define inf 0x3f3f3f3f
#define lson l, m, rt << 1
#define rson m+1, r, rt << 1|1
typedef pair<int,int> PII;
#define A first
#define B second
#define MK make_pair
typedef __int64 ll;
template<typename T>
void read1(T &m)
{
T x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
m = x*f;
}
template<typename T>
void read2(T &a,T &b){read1(a);read1(b);}
template<typename T>
void read3(T &a,T &b,T &c){read1(a);read1(b);read1(c);}
const int MAXN = ;
int mu[MAXN],vis[MAXN],p[MAXN];
void mobius()
{
mu[] = ;//定义
rep0(i,,MAXN){
if(vis[i] == ){
mu[i] = -;
p[++p[]] = i;
}
for(int j = ;j <= p[] && 1LL*p[j]*i < MAXN;j++){ // p[j] < MAXN/i WA了
vis[i*p[j]] = ;
if(i%p[j]) mu[i*p[j]] = -mu[i];
else{
mu[i*p[j]] = ;
break;
}
}
}
}
int main()
{
int T,kase = ,a,b,c,d,k;
mobius();
read1(T);
while(T--){
ll ans = ,tmp = ;
read2(a,b);read3(c,d,k);
if(k == ){
printf("Case %d: %I64d\n",kase++,ans);
continue;
}
b /= k,d /= k;//**这样更简便
if(b > d) swap(b,d);
rep1(i,,b) ans += 1LL*mu[i]*(b/i)*(d/i);
rep1(i,,b) tmp += 1LL*mu[i]*(b/i)*(b/i);
printf("Case %d: %I64d\n",kase++,ans - tmp/);
}
return ;
}
hdu 1695 GCD 莫比乌斯反演入门的更多相关文章
- HDU 1695 GCD 莫比乌斯反演
		
分析:简单的莫比乌斯反演 f[i]为k=i时的答案数 然后就很简单了 #include<iostream> #include<algorithm> #include<se ...
 - hdu 1695 GCD 莫比乌斯
		
GCD Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...
 - ●HDU 1695 GCD
		
题链: http://acm.hdu.edu.cn/showproblem.php?pid=1695 题解: 容斥. 莫比乌斯反演,入门题. 问题化简:求满足x∈(1~n)和y∈(1~m),且gcd( ...
 - BZOJ 2820 luogu 2257 yy的gcd (莫比乌斯反演)
		
题目大意:求$gcd(i,j)==k,i\in[1,n],j\in[1,m] ,k\in prime,n,m<=10^{7}$的有序数对个数,不超过10^{4}次询问 莫比乌斯反演入门题 为方便 ...
 - $BZOJ$2818 $gcd$ 莫比乌斯反演/欧拉函数
		
正解:莫比乌斯反演/欧拉函数 解题报告: 传送门$QwQ$ 一步非常显然的变形,原式=$\sum_{d=1,d\in prim}^{n}\sum_{i=1}^{n}\sum_{j=1}^{n}[gcd ...
 - [BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块)
		
[BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块) 题面 给定N, M,求\(1\leq x\leq N, 1\leq y\leq M\)且gcd(x, y)为质数的(x, y)有多少对. ...
 - GCD HDU - 1695   莫比乌斯反演入门
		
题目链接:https://cn.vjudge.net/problem/HDU-1695#author=541607120101 感觉讲的很好的一个博客:https://www.cnblogs.com/ ...
 - HDU 1695 GCD 欧拉函数+容斥定理 || 莫比乌斯反演
		
GCD Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...
 - HDU 1695 GCD (莫比乌斯反演)
		
GCD Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...
 
随机推荐
- Mysql性能调优
			
在MYSQL命令行客户端添加 \G 语句终止符可以让返回的结果集垂直显示. 一.查找运行缓慢的 SQL语句 :show full processlist ; 二.生成一个查询执行计划(Query Ex ...
 - 命令行一键清除IE记录
			
清除Internet临时文件 RunDll32.exe InetCpl.cpl,ClearMyTracksByProcess 8 清除Cookies RunDll32.exe InetCpl.cpl, ...
 - View绘制详解(三),扒一扒View的测量过程
			
所有东西都是难者不会,会者不难,Android开发中有很多小伙伴觉得自定义View和事件分发或者Binder机制等是难点,其实不然,如果静下心来花点时间把这几个技术点都研究一遍,你会发现其实这些东西都 ...
 - Android_Spinner_Listener
			
xml布局文件: <RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android" xml ...
 - swift项目中嵌入oc
			
参考资料 需要注意的是 与oc包含swift不同的是 swift包含oc需要在桥接文件中包含要使用的oc的头文件 demo:swiftPlayOc(提取码:37c6)
 - RecyclerView, ListView 只显示一行内容 问题解决
			
Adapter 中的data有多行,但是RecyclerView只显示一行. 原因出在item的layout xml, 用了自动生成的RelativeLayout, 她的默认高度height属性是ma ...
 - 【转】MyBatis学习总结(二)——使用MyBatis对表执行CRUD操作
			
[转]MyBatis学习总结(二)——使用MyBatis对表执行CRUD操作 上一篇博文MyBatis学习总结(一)——MyBatis快速入门中我们讲了如何使用Mybatis查询users表中的数据, ...
 - springmvc前后端传值总结
			
1 前端向后端传参 1.1 普通方式传参 1.1.1 页面 参数需要解析成json对象:JSON.parse(JSON.stringify(query)) $.getJ ...
 - 怎么在ubuntu上使用pidgin登陆QQ
			
1.Ubuntu pidgin安装webqq 首先安装webqq的通讯协议: sudo add-apt-repository ppa:lainme/pidgin-lwqq sudo apt-get u ...
 - JAVA中REPLACE和REPLACEALL的区别(转)
			
replace和replaceAll是JAVA中常用的替换字符的方法,它们的区别是: 1)replace的参数是char和CharSequence,即可以支持字符的替换,也支持字符串的替换(Char ...