机器人感知是UPNN机器人专项中的最后一门课程,其利用视觉方法来对环境进行感知。与之前提到的机器人视觉不同,机器人感知更侧重于对环境物体的识别与检测。与计算机视觉不同,机器人视觉所识别的物体往往不需要高精度测量,物体也有明显特征。机器人感知最为典型的应用是对环境的感知 —— SLAM,同步定位与地图构建。如果说机器人视觉解决了where am I的问题,那么Robotic Perception 面对的是Who is it.

1、1D Gaussian

  感知要解决的是对环境识别的问题,沿着PGM的思路往下,识别就是算概率。对于一般的识别任务,比如识别一个自然环境中的网球,可以对网球的颜色进行建模。为了符合人们的感知,可以先将RGB图像转为HSI图像,其中色度Hue,就与亮度解耦,成为一个不变量了。其只和材质与光照条件有关。一个物体如果颜色是统一的,那么其 H 会满足Gaussian分布。只需要从训练集中提取这个分布,就可以用于判别场景中是否存在这个物体。

2、mutiple Gaussian

  mutiple Gaussian 对应的是多变量高斯模型。多变量高斯模型分为相关和不相关两种,具体表现在协方差矩阵上。其分布均值是样本均值,其方差是样本的协方差矩阵!

3、Expecatation Maxiumazition

  EM算法是无监督学习中非常重要的一种算法。其可以分解成两个步骤——E step, M step

  其中,E step 表示的是由 label ---> parameters. label 不一定是01样本,也可以是各个样本的概率。如果是概率样本,则可以使用 weighted Gaussian estimation 来估计parameters:具体算法见PGM week9 Homework in OSChina.

  M step 表示的是由parametes ---> label. 也就是对当前的参数来计算样本各个label的概率。

  如此往复最终可获得稳定的分类结果。需要指出的是EM算法对初始label 非常敏感。如果是当量样本中有少量缺失标记,EM算法可以很好的满足需求。如果纯聚类,则可考虑使用其他聚类算法先给出聚类结果,再利用EM来进行优化。

  

  

机器人学 —— 机器人感知(Gaussian Model)的更多相关文章

  1. 机器人学 —— 机器人感知(Kalman Filter)

    对于机器人感知任务而言,经常需要预判物体的运动,保证机器人在物体与自身接触之前进行规避.比如无人机与障碍物的碰撞,足球机器人判断足球的位置.预判的前提是对当前状态进行准确的估计,比如足球的速度,障碍物 ...

  2. 机器人学 —— 机器人感知(Location)

    终于完成了Robotic SLAM 所有的内容了.说实话,课程的内容比较一般,但是作业还是挺有挑战性的.最后一章的内容是 Location. Location 是 Mapping 的逆过程.在给定ma ...

  3. 机器人学 —— 机器人感知(Mapping)

    对于移动机器人来说,最吸引人的莫过于SLAM,堪称Moving Robot 皇冠上的明珠.Perception 服务于 SLAM,Motion Plan基于SLAM.SLAM在移动机器人整个问题框架中 ...

  4. 机器人学 —— 机器人视觉(Bundle Adjustment)

    今天完成了机器人视觉的所有课程以及作业,确实是受益匪浅啊! 最后一个话题是Bundle Adjustment. 机器人视觉学中,最顶尖的方法. 1.基于非线性优化的相机位姿估计 之前已经在拟合一篇中, ...

  5. Robot Perception for Indoor Navigation《室内导航中的机器人感知》

    Felix Endres 论文下载 Technische Fakult¨ atAlbert-Ludwigs-Universit¨ at Freiburg Betreuer: Prof. Dr. Wol ...

  6. [zz] 混合高斯模型 Gaussian Mixture Model

    聚类(1)——混合高斯模型 Gaussian Mixture Model http://blog.csdn.net/jwh_bupt/article/details/7663885 聚类系列: 聚类( ...

  7. ROSCon 2016视频和幻灯片发布 ROS机器人操作系统重要参考资料

    ROSCon 2016视频和幻灯片发布 By Tully Foote on 十月19,2016 7:28 AM 全部PPT下载地址:http://pan.baidu.com/s/1gf2sn2F RO ...

  8. ROS会议 ROSCon 2017

    ----ROSCon2012-2017----来源链接:https://roscon.ros.org           近三年ROSCon(2015-2017)都会将会议视频录像和文档公开~以下为机 ...

  9. torch 深度学习 (2)

    torch 深度学习 (2) torch ConvNet 前面我们完成了数据的下载和预处理,接下来就该搭建网络模型了,CNN网络的东西可以参考博主 zouxy09的系列文章Deep Learning ...

随机推荐

  1. 团队项目的NABC

    我们团队项目是做一个基于PC端的截屏软件,我觉得一个好的截屏软件需要具备磁性吸附的功能.当你需要对某个图像或者是其他的什么截屏的时候,精度比较高,不需要那些边框外的东西,磁性吸附就是在你选中的时候尽管 ...

  2. String、StringBuffer与StringBuilder的区别

    String 字符串常量StringBuffer 字符串变量(线程安全)StringBuilder 字符串变量(非线程安全) 简要的说, String 类型和 StringBuffer 类型的主要性能 ...

  3. AJAX三种返回值方式

    (一)TEXT方式 该方式返回的是拼接字符串,想要取到其中的值,需要先将返回值进行拆分 (二)JSON方式 该方式返回的是数组,想要取到其中的值,可用索引项进行提取 (三)XML方式 XML:可扩展标 ...

  4. Codeforces Round #350 (Div. 2) D2. Magic Powder - 2

    题目链接: http://codeforces.com/contest/670/problem/D2 题解: 二分答案. #include<iostream> #include<cs ...

  5. HTTP persistent connection

    http://en.wikipedia.org/wiki/HTTP_persistent_connection

  6. JAVA float double数据类型保留2位小数点5种方法

    /** * Java 两个整数相除保留两位小数,将小数转化为百分数 * java中,当两个整数相除时,由于小数点以后的数字会被截断,运算结果将为整数,此时若希望得到运算结果为浮点数,必须将两整数其一或 ...

  7. jQuery scroll事件

    scroll事件适用于window对象,但也可滚动iframe框架与CSS overflow属性设置为scroll的元素. $(document).ready(function () { //本人习惯 ...

  8. MVC中 ViewBag、ViewData和TempData区别

    MVC3中 ViewBag.ViewData和TempData的使用和区别 public dynamic ViewBag { get; } public ViewDataDictionary View ...

  9. sql server 存储过程,事务

    1.存储过程,事务 CREATE PROCEDURE Proc_ceshi @id int, ), @returnval int output AS BEGIN SET NOCOUNT ON; Set ...

  10. web快速开发c/s软件构架

    很久没用.net winform 做东西,对控件相对比较陌生,另外控件的UI也不是那么好改.公司项目需要有web客户端,同时有软件客户端形式.考虑再三采用webBrowser+html 来实现 .用h ...