机器人感知是UPNN机器人专项中的最后一门课程,其利用视觉方法来对环境进行感知。与之前提到的机器人视觉不同,机器人感知更侧重于对环境物体的识别与检测。与计算机视觉不同,机器人视觉所识别的物体往往不需要高精度测量,物体也有明显特征。机器人感知最为典型的应用是对环境的感知 —— SLAM,同步定位与地图构建。如果说机器人视觉解决了where am I的问题,那么Robotic Perception 面对的是Who is it.

1、1D Gaussian

  感知要解决的是对环境识别的问题,沿着PGM的思路往下,识别就是算概率。对于一般的识别任务,比如识别一个自然环境中的网球,可以对网球的颜色进行建模。为了符合人们的感知,可以先将RGB图像转为HSI图像,其中色度Hue,就与亮度解耦,成为一个不变量了。其只和材质与光照条件有关。一个物体如果颜色是统一的,那么其 H 会满足Gaussian分布。只需要从训练集中提取这个分布,就可以用于判别场景中是否存在这个物体。

2、mutiple Gaussian

  mutiple Gaussian 对应的是多变量高斯模型。多变量高斯模型分为相关和不相关两种,具体表现在协方差矩阵上。其分布均值是样本均值,其方差是样本的协方差矩阵!

3、Expecatation Maxiumazition

  EM算法是无监督学习中非常重要的一种算法。其可以分解成两个步骤——E step, M step

  其中,E step 表示的是由 label ---> parameters. label 不一定是01样本,也可以是各个样本的概率。如果是概率样本,则可以使用 weighted Gaussian estimation 来估计parameters:具体算法见PGM week9 Homework in OSChina.

  M step 表示的是由parametes ---> label. 也就是对当前的参数来计算样本各个label的概率。

  如此往复最终可获得稳定的分类结果。需要指出的是EM算法对初始label 非常敏感。如果是当量样本中有少量缺失标记,EM算法可以很好的满足需求。如果纯聚类,则可考虑使用其他聚类算法先给出聚类结果,再利用EM来进行优化。

  

  

机器人学 —— 机器人感知(Gaussian Model)的更多相关文章

  1. 机器人学 —— 机器人感知(Kalman Filter)

    对于机器人感知任务而言,经常需要预判物体的运动,保证机器人在物体与自身接触之前进行规避.比如无人机与障碍物的碰撞,足球机器人判断足球的位置.预判的前提是对当前状态进行准确的估计,比如足球的速度,障碍物 ...

  2. 机器人学 —— 机器人感知(Location)

    终于完成了Robotic SLAM 所有的内容了.说实话,课程的内容比较一般,但是作业还是挺有挑战性的.最后一章的内容是 Location. Location 是 Mapping 的逆过程.在给定ma ...

  3. 机器人学 —— 机器人感知(Mapping)

    对于移动机器人来说,最吸引人的莫过于SLAM,堪称Moving Robot 皇冠上的明珠.Perception 服务于 SLAM,Motion Plan基于SLAM.SLAM在移动机器人整个问题框架中 ...

  4. 机器人学 —— 机器人视觉(Bundle Adjustment)

    今天完成了机器人视觉的所有课程以及作业,确实是受益匪浅啊! 最后一个话题是Bundle Adjustment. 机器人视觉学中,最顶尖的方法. 1.基于非线性优化的相机位姿估计 之前已经在拟合一篇中, ...

  5. Robot Perception for Indoor Navigation《室内导航中的机器人感知》

    Felix Endres 论文下载 Technische Fakult¨ atAlbert-Ludwigs-Universit¨ at Freiburg Betreuer: Prof. Dr. Wol ...

  6. [zz] 混合高斯模型 Gaussian Mixture Model

    聚类(1)——混合高斯模型 Gaussian Mixture Model http://blog.csdn.net/jwh_bupt/article/details/7663885 聚类系列: 聚类( ...

  7. ROSCon 2016视频和幻灯片发布 ROS机器人操作系统重要参考资料

    ROSCon 2016视频和幻灯片发布 By Tully Foote on 十月19,2016 7:28 AM 全部PPT下载地址:http://pan.baidu.com/s/1gf2sn2F RO ...

  8. ROS会议 ROSCon 2017

    ----ROSCon2012-2017----来源链接:https://roscon.ros.org           近三年ROSCon(2015-2017)都会将会议视频录像和文档公开~以下为机 ...

  9. torch 深度学习 (2)

    torch 深度学习 (2) torch ConvNet 前面我们完成了数据的下载和预处理,接下来就该搭建网络模型了,CNN网络的东西可以参考博主 zouxy09的系列文章Deep Learning ...

随机推荐

  1. 软件工程课后作业——四则运算Ⅲ(C++)

    一.设计思路 题目:可以答题并判断对错,最后显示做对几道题. 在原有的基础上,又拓展了答题模块. 在结构体中添加了answer属性,把输入的答案与正确答案比较,若相等则计数加一. 二.源代码 (1)四 ...

  2. jQuery多库共存处理

    jQuery多库共存处理(来自慕课网) 多库共存换句话说可以叫无冲突处理. 总的来说会有2种情况会遇到: 1.$太火热,jQuery采用$作为命名空间,不免会与别的库框架或者插件相冲突. 2.jQue ...

  3. Netsharp快速入门(之8) 基础档案(工作区2 设置商品主列表、规格细列表、商品表单、查询)

    作者:秋时 杨昶   时间:2014-02-15  转载须说明出处 3.5.1.1 列表设置 1.选择第一行主列表,点工具-列表方案 2.打开列表方案界面后,在列表项目填入需要用到实体Demo.Arc ...

  4. c++ ip地址的操作 c版

    http://blog.csdn.net/cpp_funs/article/details/6988154 1.htonl ()和ntohl( ) u_long PASCAL FAR ntohl (u ...

  5. 02.Apache FtpServer使用数据库管理用户

    1.创建数据库及表 使用\apache-ftpserver-1.0.6\res\ftp-db.sql建表,内容如下: CREATE TABLE FTP_USER ( userid VARCHAR(64 ...

  6. 设计模式之建造者模式(Builder)

    建造者模式原理:建造模式主要是用于产生对象的各个组成部分,而抽象工厂模式则用于产生一系列对象,建造者模式而且要求这些对象的组成部分有序. 代码如下: #include <iostream> ...

  7. Poj2420 A Star not a Tree? 模拟退火算法

    题目链接:http://poj.org/problem?id=2420 题目大意:每组数据中给n个点(n<=100),求平面中一个点使得这个点到n个点的距离之和最小. 分析:一开始看到这个题想必 ...

  8. matrix_last_acm_4

    2013 ACM-ICPC吉林通化全国邀请赛 A http://acm.hust.edu.cn/vjudge/contest/view.action?cid=97654#problem/A 题意:输入 ...

  9. 在C#中调用VBScript和JavaScript等脚本的实现

    在C#中调用VBScript.JavaScript等脚本的实现 作者:郑佐 2004-04-26 以前在做工作流(workflow)项目的时候,里面有一项就是在用户制定流程定义时可以编写脚本来控制活动 ...

  10. CSRF(跨站请求伪造)攻击方式

    一.CSRF是什么? CSRF(Cross-site request forgery),中文名称:跨站请求伪造,也被称为:one click attack/session riding,缩写为:CSR ...