poj 2749
| Time Limit: 2000MS | Memory Limit: 65536K | |
| Total Submissions: 6091 | Accepted: 2046 |
Description
Clever John just had another good idea. He first builds two transferring point S1 and S2, and then builds a road connecting S1 and S2 and N roads connecting each barn with S1 or S2, namely every barn will connect with S1 or S2, but not both. So that every pair of barns will be connected by the roads. To make the cows don't spend too much time while dropping around, John wants to minimize the maximum of distances between every pair of barns.
That's not the whole story because there is another troublesome problem. The cows of some barns hate each other, and John can't connect their barns to the same transferring point. The cows of some barns are friends with each other, and John must connect their barns to the same transferring point. What a headache! Now John turns to you for help. Your task is to find a feasible optimal road-building scheme to make the maximum of distances between every pair of barns as short as possible, which means that you must decide which transferring point each barn should connect to.
We have known the coordinates of S1, S2 and the N barns, the pairs of barns in which the cows hate each other, and the pairs of barns in which the cows are friends with each other.
Note that John always builds roads vertically and horizontally, so the length of road between two places is their Manhattan distance. For example, saying two points with coordinates (x1, y1) and (x2, y2), the Manhattan distance between them is |x1 - x2| + |y1 - y2|.
Input
Next line contains 4 integer sx1, sy1, sx2, sy2, which are the coordinates of two different transferring point S1 and S2 respectively.
Each of the following N line contains two integer x and y. They are coordinates of the barns from the first barn to the last one.
Each of the following A lines contains two different integers i and j(1 <= i < j <= N), which represent the i-th and j-th barns in which the cows hate each other.
The same pair of barns never appears more than once.
Each of the following B lines contains two different integers i and j(1 <= i < j <= N), which represent the i-th and j-th barns in which the cows are friends with each other. The same pair of barns never appears more than once.
You should note that all the coordinates are in the range [-1000000, 1000000].
Output
Sample Input
4 1 1
12750 28546 15361 32055
6706 3887
10754 8166
12668 19380
15788 16059
3 4
2 3
Sample Output
53246
Source
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <stack> using namespace std; const int MAX_N = ;
int N,M,A,B;
bool fri[MAX_N][MAX_N],hate[MAX_N][MAX_N];
int low[MAX_N * ],pre[MAX_N * ],cmp[MAX_N * ];
int dfs_clock,scc_cnt;
int x[MAX_N],y[MAX_N];
stack<int> S;
vector<int> G[ * MAX_N]; void dfs(int u) {
low[u] = pre[u] = ++dfs_clock;
S.push(u);
for(int i = ; i < G[u].size(); ++i) {
int v = G[u][i];
if(!pre[v]) {
dfs(v);
low[u] = min(low[u],low[v]);
} else if(!cmp[v]) {
low[u] = min(low[u],pre[v]);
}
} if(low[u] == pre[u]) {
++scc_cnt;
for(;;) {
int x = S.top(); S.pop();
cmp[x] = scc_cnt;
if(x == u) break;
}
}
} bool scc() {
dfs_clock = scc_cnt = ;
memset(cmp,,sizeof(cmp));
memset(pre,,sizeof(pre)); for(int i = ; i <= * N + ; ++i) if(!pre[i]) dfs(i); for(int i = ; i <= N + ; ++i) {
if(cmp[i] == cmp[N + i]) return false;
}
return true;
} int dis(int i,int j) {
return abs(x[i] - x[j]) + abs(y[i] - y[j]);
} void build(int x) {
for(int i = ; i <= * N + ; ++i) {
G[i].clear();
} for(int i = ; i <= N + ; ++i) {
for(int j = i + ; j <= N + ; ++j) {
if(fri[i][j]) {
G[i].push_back(j);
G[i + N].push_back(j + N);
G[j].push_back(i);
G[j + N].push_back(i + N);
}
if(hate[i][j]) {
G[i].push_back(j + N);
G[j].push_back(i + N);
G[j + N].push_back(i);
G[i + N].push_back(j);
} if(dis(i,) + dis(j,) > x) {
G[i].push_back(j + N);
G[j].push_back(i + N);
}
if(dis(i,) + dis(j,) > x) {
G[i + N].push_back(j);
G[j + N].push_back(i);
}
if(dis(i,) + dis(j,) + dis(,) > x) {
G[i + N].push_back(j + N);
G[j].push_back(i);
}
if(dis(i,) + dis(j,) + dis(,)> x) {
G[i].push_back(j);
G[j + N].push_back(i + N);
}
}
} }
void solve() {
int l = ,r = 12e6 + ; //printf("r = %d\n",r); while(l < r) {
int mid = (l + r) / ;
build(mid);
if(scc()) r = mid;
else l = mid + ;
}
build(l);
if(scc())
printf("%d\n",l);
else
printf("-1\n");
} int main()
{
//freopen("sw.in","r",stdin);
scanf("%d%d%d",&N,&A,&B);
for(int i = ; i <= N + ; ++i) {
scanf("%d%d",&x[i],&y[i]);
} for(int i = ; i <= A; ++i) {
int a,b;
scanf("%d%d",&a,&b);
hate[a + ][b + ] = ;
} for(int i = ; i <= B; ++i) {
int a,b;
scanf("%d%d",&a,&b);
fri[a + ][b + ] = ;
} solve(); return ;
}
poj 2749的更多相关文章
- HDU 1815, POJ 2749 Building roads(2-sat)
HDU 1815, POJ 2749 Building roads pid=1815" target="_blank" style="">题目链 ...
- Java实现 POJ 2749 分解因数(计蒜客)
POJ 2749 分解因数(计蒜客) Description 给出一个正整数a,要求分解成若干个正整数的乘积,即a = a1 * a2 * a3 * - * an,并且1 < a1 <= ...
- poj 2749 Building roads (二分+拆点+2-sat)
Building roads Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 6229 Accepted: 2093 De ...
- poj 2749 2-SAT问题
思路:首先将hate和friend建边求其次2-SAT问题,判断是否能有解,没解就输出-1,否则用二分枚举最大的长度,将两个barn的距离小于mid的看做是矛盾,然后建边,求2-SAT问题.找出最优解 ...
- [poj] 2749 building roads
原题 2-SAT+二分答案! 最小的最大值,这肯定是二分答案.而我们要2-SATcheck是否在该情况下有可行解. 对于目前的答案limit,首先把爱和恨连边,然后我们n^2枚举每两个点通过判断距离来 ...
- POJ 2749 Building roads 2-sat+二分答案
把爱恨和最大距离视为限制条件,可以知道,最大距离和限制条件多少具有单调性 所以可以二分最大距离,加边+check #include<cstdio> #include<algorith ...
- POJ 2749 2SAT判定+二分
题意:图上n个点,使每个点都与俩个中转点的其中一个相连(二选一,典型2-sat),并使任意两点最大 距离最小(最大最小,2分答案),有些点相互hata,不能选同一个中转点,有些点相互LOVE,必需选相 ...
- TTTTTTTTTTT POJ 2749 修牛棚 2-Sat + 路径限制 变形
Building roads Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 7019 Accepted: 2387 De ...
- [转] POJ图论入门
最短路问题此类问题类型不多,变形较少 POJ 2449 Remmarguts' Date(中等)http://acm.pku.edu.cn/JudgeOnline/problem?id=2449题意: ...
随机推荐
- 与谷歌测试工程师的对话 - from Google Testing Blog
Conversation with a Test Engineer by Alan Faulner Alan Faulner谷歌的一名测试工程师,他工作在DoubleClick Bid Manager ...
- mysql Unknown table engine 'InnoDB'解决办法
最近做项目时,由于数据库存的中文乱码.改了一下配置.中文乱码改过来了,但是在导入数据时Unknown table engine 'InnoDB' 百度上各种拷贝.最后看了下InnoDB.是一种支持事 ...
- linux C 管道
单一进程使用管道基本上毫无意义.管道一般用来子进程和父进程之间的通信,或者兄弟进程间的通信. 创建管道的主要函数是pipe #include<unistd.h> ]) pipe函数创建一个 ...
- hdu 5142 NPY and FFT
题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=5142 NPY and FFT Description A boy named NPY is learn ...
- python pandas/numpy
import pandas as pdpd.merge(dataframe1,dataframe2,on='common_field',how='outer') replace NaN datafra ...
- mssql 动态添加数据库用户
USE [master]GOCREATE LOGIN [admin] WITH PASSWORD=N'123456', DEFAULT_DATABASE=[test], CHECK_EXPIRATIO ...
- 配置 Cocoapods的简单配置及胡思乱想
外部访问属性 & 重要属性变化 外部访问方法 监听方法 内部属性 swift编写 懒加载控件.布局.监听 使用第三方框架之前先需要配置 cocoapods环境 (唐巧博客) gib 查看自己的 ...
- Android开发随笔4
昨天: 今天: 编写代码
- MD5加密(C#)
先来说说Md5 MD5为计算机安全领域广泛使用的一种散列函数,用以提供消息的完整性保护. md5有很多广泛的功能.大家都知道,数据库里面密码不会直接存该密码,而是加密之后的字符串.这时候你就可以把密码 ...
- 用setTimeout 代替 setInterval实时拉取数据
在开发中,我们常常碰到需要定时拉取网站数据,如: setInterval(function(){ $.ajax({ url: 'xx', success: function( response ){ ...