最近刷题的同时还得填填坑,说来你们也不信,我还不会数位dp。




照例推几篇博客:

数位DP讲解

数位dp 的简单入门

这两篇博客讲的都很好,不过代码推荐记搜的形式,不仅易于理解,还短。




数位dp的式子一般是这样的:dp[i][][]表示到第\(i\)位,而后面几维就因题而异了。

不过通用的思想就是利用前缀相减求出区间信息。

算了上题吧。




[SCOI2009]windy数

这都说是数位dp入门题。

根据这题,受到影响的数只有相邻两个,因此dp[i][j]表示到第\(i\)位(从高往低)上一位的数\(j\)的答案。

接下来的关键在于怎么判断到达上界的情况。那么我们在搜索的时候加一个bool变量_Max表示是否到达上界,如果是,那么这一位的最大值就是该位上的数,否则就是9。

然后关于前导零,我又开了一个bool变量zero判断他之前有没有过非0的数。

接下来就是记搜的内容了。先写一个爆搜,然后把答案存在dp里,基本就是记搜了。

#include<cstdio>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<cstring>
#include<cstdlib>
#include<cctype>
#include<vector>
#include<stack>
#include<queue>
using namespace std;
#define enter puts("")
#define space putchar(' ')
#define Mem(a, x) memset(a, x, sizeof(a))
#define In inline
typedef long long ll;
typedef double db;
const int INF = 0x3f3f3f3f;
const db eps = 1e-8;
const int maxn = 12;
inline ll read()
{
ll ans = 0;
char ch = getchar(), last = ' ';
while(!isdigit(ch)) last = ch, ch = getchar();
while(isdigit(ch)) ans = (ans << 1) + (ans << 3) + ch - '0', ch = getchar();
if(last == '-') ans = -ans;
return ans;
}
inline void write(ll x)
{
if(x < 0) x = -x, putchar('-');
if(x >= 10) write(x / 10);
putchar(x % 10 + '0');
} int dp[maxn][maxn], num[maxn], cnt = 0; In int dfs(int len, int las, bool _Max, bool zero)
{
if(!len) return 1; //表示出现了一个符合条件的数,就返回1
if(!_Max && !zero && dp[len][las] != -1) return dp[len][las];
//只有普通情况才可以返回记搜的答案.
int pos, ret = 0, Max = _Max ? num[len] : 9;
for(int i = 0; i <= Max; ++i)
{
if(abs(i - las) < 2) continue;
pos = (zero && !i) ? -INF : i; //如果前面都是0且这一位还填0,就标记为INF
ret += dfs(len - 1, pos, _Max && i == Max, pos == -INF);
}
if(!_Max && !zero) dp[len][las] = ret;
return ret;
} In int solve(int n)
{
Mem(dp, -1); cnt = 0;
while(n) num[++cnt] = n % 10, n /= 10; //处理每一位
return dfs(cnt, -INF, 1, 1);
} int main()
{
int a = read(), b = read();
write(solve(b) - solve(a - 1)), enter;
return 0;
}



**[luogu P3413 SAC#1 - 萌数](https://www.luogu.org/problemnew/show/P3413)**
这题反正我是不会,看了题解也没懂。最后在dukelv的帮助下搞明白了。
首先题解中有很多篇用了正难则反的思想,但其实没必要。
考虑最小的回文串,无非两种:aa, aba。
所以我们只用找出这两种回文串即可。因为大的回文串比如acbbca,在搜bb的时候,下几个状态就包括这个回文串了。
那么就要讨论奇偶,所以爆搜的时候开两个变量pre,per分别记录上一位和上上一位,然后判断和当前位是否构成回文串。
别忘了还可能会出现构不成萌数的情况,所以dp方程除了dp[i][j]表示到了第$i$位,这一位填$i$,还应再加一位[0/1]表示当前是否存在萌数,这样能剪枝不少。
```c++
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
using namespace std;
#define enter puts("")
#define space putchar(' ')
#define Mem(a, x) memset(a, x, sizeof(a))
#define In inline
typedef long long ll;
typedef double db;
const int INF = 0x3f3f3f3f;
const db eps = 1e-8;
const int maxn = 1e3 + 5;
const ll mod = 1e9 + 7;
inline ll read()
{
ll ans = 0;
char ch = getchar(), last = ' ';
while(!isdigit(ch)) last = ch, ch = getchar();
while(isdigit(ch)) ans = (ans = 10) write(x / 10);
putchar(x % 10 + '0');
}

char a[maxn], b[maxn];

int num[maxn], len = 0;

ll dp[maxn][10][2];

In ll dfs(int pos, int pre, int per, bool _t, bool _k, bool _Max)

{

if(!pos) return _t; //_t表示当前是否存在萌数

if(!_Max && dp[pos][pre][_t] != -1) return dp[pos][pre][_t];

int Max = _Max ? num[pos] : 9;

ll ret = 0;

for(int i = 0; i <= Max; ++i)

ret += dfs(pos - 1, i, _k ? pre : -1, _t || (i == pre && _k) || (i == per && _k), _k || i, _Max && i == Max), ret %= mod;

if(!_Max && _k && per != -1) dp[pos][pre][_t] = ret % mod;

return ret;

}

In ll solve(char* s)

{

len = strlen(s + 1);

for(int i = 1; i <= len; ++i) num[i] = s[i] - '0';

reverse(num + 1, num + len + 1);

Mem(dp, -1);

return dfs(len, -1, -1, 0, 0, 1);

}

int main()

{

scanf("%s%s", a + 1, b + 1);

int tp = strlen(a + 1);

reverse(a + 1, a + tp + 1);

int pos = 1; //别忘了是高精减1……

--a[pos];

while(pos < tp && a[pos] < '0') a[pos++] = '9', --a[pos];

while(tp > 1 && a[tp] <= '0') a[tp--] = '\0';

reverse(a + 1, a + tp + 1);

write((solve(b) - solve(a) + mod) % mod), enter;

return 0;

}

数位dp小练的更多相关文章

  1. 【树形dp小练】HDU1520 HDU2196 HDU1561 HDU3534

    [树形dp]就是在树上做的一些dp之类的递推,由于一般须要递归处理.因此平庸情况的处理可能须要理清思路.昨晚開始切了4题,作为入门训练.题目都很easy.可是似乎做起来都还口以- hdu1520 An ...

  2. 牛客寒假算法基础集训营3处女座和小姐姐(三) (数位dp)

    链接:https://ac.nowcoder.com/acm/contest/329/G来源:牛客网 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 262144K,其他语言52428 ...

  3. 处女座和小姐姐(三)(数位dp)

    链接:https://ac.nowcoder.com/acm/contest/329/G 来源:牛客网 题目描述 经过了选号和漫长的等待,处女座终于拿到了给小姐姐定制的手环,小姐姐看到以后直呼666! ...

  4. [bzoj3209][花神的数论题] (数位dp+费马小定理)

    Description 背景众所周知,花神多年来凭借无边的神力狂虐各大 OJ.OI.CF.TC …… 当然也包括 CH 啦.描述话说花神这天又来讲课了.课后照例有超级难的神题啦…… 我等蒟蒻又遭殃了. ...

  5. P2188 小Z的 k 紧凑数 题解(数位DP)

    题目链接 小Z的 k 紧凑数 解题思路 数位DP,把每一个数位的每一个数对应的可能性表示出来,然后求\(num(1,r)-num(1,l-1)\),其中\(num(i,j)\)表示\([i,j]\)区 ...

  6. 数位DP之小小结

    资料链接:http://wenku.baidu.com/view/9de41d51168884868662d623.html http://wenku.baidu.com/view/d2414ffe0 ...

  7. 牛客训练三:处女座和小姐姐(三)(数位dp)

    题目链接:传送门 思路:数位dp的记忆化搜索模板 从高位向低位枚举,逐位确定每一位的6的个数,dp[i][s]表示处理到第i条边,状态为s时的数字的个数. 注意,要使用long long类型. #in ...

  8. SCUT - 289 - 小O的数字 - 数位dp

    https://scut.online/p/289 一个水到飞起的模板数位dp. #include<bits/stdc++.h> using namespace std; typedef ...

  9. [CSP-S模拟测试]:小L的数(数位DP+模拟)

    题目传送门(内部题132) 输入格式 第一行一个整数$t$. 接下来$t$行每行一个整数$n$. 输出格式 $t$行,每行一个整数表示答案. 样例 样例输入: 41818231232691052109 ...

随机推荐

  1. JavaWeb学习(一)———JavaWeb入门

    一.基本概念 1.1.WEB开发的相关知识 WEB,在英语中web即表示网页的意思,它用于表示Internet主机上供外界访问的资源. Internet上供外界访问的Web资源分为: 静态web资源( ...

  2. Java提高篇之理解java的三大特性——继承

    在<Think in java>中有这样一句话:复用代码是Java众多引人注目的功能之一.但要想成为极具革命性的语言,仅仅能够复制代码并对加以改变是不够的,它还必须能够做更多的事情.在这句 ...

  3. 基于Asp.Net Core的简单社区项目源代码开源

    2019年3月27号 更新版本 本项目基于 ASP.NET CORE 3.0+EF CORE 3.0开发 使用vs2019 +sqlserver 2017(数据库脚本最低支持sql server 20 ...

  4. [SCOI2010] 连续攻击游戏

    题目 Description lxhgww最近迷上了一款游戏,在游戏里,他拥有很多的装备,每种装备都有2个属性,这些属性的值用[1,10000]之间的数表示.当他使用某种装备时,他只能使用该装备的某一 ...

  5. Oracle,MySQL,sqlserver三大数据库如何获取系统当前时间

    Oracle中如何获取系统当前时间:用SYSDATE() MySQL中获取系统当前时间主要有以下几点: (1)now()函数以('YYYY-MM-dd HH:mm:SS')返回当前的日期时间,可以直接 ...

  6. dotnet 从入门到放弃的 500 篇文章合集

    本文是记录我从入门到放弃写的博客 博客包括 C#.WPF.UWP.dotnet core .git 和 VisualStudio 和一些算法,所有博客使用 docx 保存 下载:dotnet 从入门到 ...

  7. ASP.NET新增数据返回自增ID

    一.情景引入 项目需求:对于一个数据表(表A)的增.删.改全部要有日志记录,日志表(表B)结构 中需要记录表A的自增ID,这样才能将日志与操作的数据一一对应起来. 对于删和改都好办,获取Model时都 ...

  8. Linux-kill命令和killall命令(11)

    kill:指定将信号发送给某个进程,常用来杀掉进程,可以通过ps.top命令来查看进程 在默认情况下: 采用编号为的TERM信号.TERM信号将终止所有不能捕获该信号的进程. 对于那些可以捕获该信号的 ...

  9. centos7.4+mysql5.6+virtualenv+python3.6+nginx+uwsgi+django生产环境搭建

    一 更新yum # yum update 二 安装gcc  lrzsz软件 # yum install gcc 用来编译python3.6源码 # yum install lrzsz 用来上传文件 三 ...

  10. webpack单独打包一个less文件

    需要将btn.less文件用webpack打包后,放到项目中.在网上百度了各种,遇到了很多问题,现在我将整个步骤整理如下: 1.建一个空的文件夹,命名为init_webpack,在该文件夹下运行: 这 ...