数位dp小练
最近刷题的同时还得填填坑,说来你们也不信,我还不会数位dp。
照例推几篇博客:
数位DP讲解
数位dp 的简单入门
这两篇博客讲的都很好,不过代码推荐记搜的形式,不仅易于理解,还短。
数位dp的式子一般是这样的:dp[i][][]表示到第\(i\)位,而后面几维就因题而异了。
不过通用的思想就是利用前缀相减求出区间信息。
算了上题吧。
[SCOI2009]windy数
这都说是数位dp入门题。
根据这题,受到影响的数只有相邻两个,因此dp[i][j]表示到第\(i\)位(从高往低)上一位的数\(j\)的答案。
接下来的关键在于怎么判断到达上界的情况。那么我们在搜索的时候加一个bool变量_Max表示是否到达上界,如果是,那么这一位的最大值就是该位上的数,否则就是9。
然后关于前导零,我又开了一个bool变量zero判断他之前有没有过非0的数。
接下来就是记搜的内容了。先写一个爆搜,然后把答案存在dp里,基本就是记搜了。
#include<cstdio>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<cstring>
#include<cstdlib>
#include<cctype>
#include<vector>
#include<stack>
#include<queue>
using namespace std;
#define enter puts("")
#define space putchar(' ')
#define Mem(a, x) memset(a, x, sizeof(a))
#define In inline
typedef long long ll;
typedef double db;
const int INF = 0x3f3f3f3f;
const db eps = 1e-8;
const int maxn = 12;
inline ll read()
{
ll ans = 0;
char ch = getchar(), last = ' ';
while(!isdigit(ch)) last = ch, ch = getchar();
while(isdigit(ch)) ans = (ans << 1) + (ans << 3) + ch - '0', ch = getchar();
if(last == '-') ans = -ans;
return ans;
}
inline void write(ll x)
{
if(x < 0) x = -x, putchar('-');
if(x >= 10) write(x / 10);
putchar(x % 10 + '0');
}
int dp[maxn][maxn], num[maxn], cnt = 0;
In int dfs(int len, int las, bool _Max, bool zero)
{
if(!len) return 1; //表示出现了一个符合条件的数,就返回1
if(!_Max && !zero && dp[len][las] != -1) return dp[len][las];
//只有普通情况才可以返回记搜的答案.
int pos, ret = 0, Max = _Max ? num[len] : 9;
for(int i = 0; i <= Max; ++i)
{
if(abs(i - las) < 2) continue;
pos = (zero && !i) ? -INF : i; //如果前面都是0且这一位还填0,就标记为INF
ret += dfs(len - 1, pos, _Max && i == Max, pos == -INF);
}
if(!_Max && !zero) dp[len][las] = ret;
return ret;
}
In int solve(int n)
{
Mem(dp, -1); cnt = 0;
while(n) num[++cnt] = n % 10, n /= 10; //处理每一位
return dfs(cnt, -INF, 1, 1);
}
int main()
{
int a = read(), b = read();
write(solve(b) - solve(a - 1)), enter;
return 0;
}
**[luogu P3413 SAC#1 - 萌数](https://www.luogu.org/problemnew/show/P3413)**
这题反正我是不会,看了题解也没懂。最后在dukelv的帮助下搞明白了。
首先题解中有很多篇用了正难则反的思想,但其实没必要。
考虑最小的回文串,无非两种:aa, aba。
所以我们只用找出这两种回文串即可。因为大的回文串比如acbbca,在搜bb的时候,下几个状态就包括这个回文串了。
那么就要讨论奇偶,所以爆搜的时候开两个变量pre,per分别记录上一位和上上一位,然后判断和当前位是否构成回文串。
别忘了还可能会出现构不成萌数的情况,所以dp方程除了dp[i][j]表示到了第$i$位,这一位填$i$,还应再加一位[0/1]表示当前是否存在萌数,这样能剪枝不少。
```c++
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
using namespace std;
#define enter puts("")
#define space putchar(' ')
#define Mem(a, x) memset(a, x, sizeof(a))
#define In inline
typedef long long ll;
typedef double db;
const int INF = 0x3f3f3f3f;
const db eps = 1e-8;
const int maxn = 1e3 + 5;
const ll mod = 1e9 + 7;
inline ll read()
{
ll ans = 0;
char ch = getchar(), last = ' ';
while(!isdigit(ch)) last = ch, ch = getchar();
while(isdigit(ch)) ans = (ans = 10) write(x / 10);
putchar(x % 10 + '0');
}
char a[maxn], b[maxn];
int num[maxn], len = 0;
ll dp[maxn][10][2];
In ll dfs(int pos, int pre, int per, bool _t, bool _k, bool _Max)
{
if(!pos) return _t; //_t表示当前是否存在萌数
if(!_Max && dp[pos][pre][_t] != -1) return dp[pos][pre][_t];
int Max = _Max ? num[pos] : 9;
ll ret = 0;
for(int i = 0; i <= Max; ++i)
ret += dfs(pos - 1, i, _k ? pre : -1, _t || (i == pre && _k) || (i == per && _k), _k || i, _Max && i == Max), ret %= mod;
if(!_Max && _k && per != -1) dp[pos][pre][_t] = ret % mod;
return ret;
}
In ll solve(char* s)
{
len = strlen(s + 1);
for(int i = 1; i <= len; ++i) num[i] = s[i] - '0';
reverse(num + 1, num + len + 1);
Mem(dp, -1);
return dfs(len, -1, -1, 0, 0, 1);
}
int main()
{
scanf("%s%s", a + 1, b + 1);
int tp = strlen(a + 1);
reverse(a + 1, a + tp + 1);
int pos = 1; //别忘了是高精减1……
--a[pos];
while(pos < tp && a[pos] < '0') a[pos++] = '9', --a[pos];
while(tp > 1 && a[tp] <= '0') a[tp--] = '\0';
reverse(a + 1, a + tp + 1);
write((solve(b) - solve(a) + mod) % mod), enter;
return 0;
}
数位dp小练的更多相关文章
- 【树形dp小练】HDU1520 HDU2196 HDU1561 HDU3534
[树形dp]就是在树上做的一些dp之类的递推,由于一般须要递归处理.因此平庸情况的处理可能须要理清思路.昨晚開始切了4题,作为入门训练.题目都很easy.可是似乎做起来都还口以- hdu1520 An ...
- 牛客寒假算法基础集训营3处女座和小姐姐(三) (数位dp)
链接:https://ac.nowcoder.com/acm/contest/329/G来源:牛客网 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 262144K,其他语言52428 ...
- 处女座和小姐姐(三)(数位dp)
链接:https://ac.nowcoder.com/acm/contest/329/G 来源:牛客网 题目描述 经过了选号和漫长的等待,处女座终于拿到了给小姐姐定制的手环,小姐姐看到以后直呼666! ...
- [bzoj3209][花神的数论题] (数位dp+费马小定理)
Description 背景众所周知,花神多年来凭借无边的神力狂虐各大 OJ.OI.CF.TC …… 当然也包括 CH 啦.描述话说花神这天又来讲课了.课后照例有超级难的神题啦…… 我等蒟蒻又遭殃了. ...
- P2188 小Z的 k 紧凑数 题解(数位DP)
题目链接 小Z的 k 紧凑数 解题思路 数位DP,把每一个数位的每一个数对应的可能性表示出来,然后求\(num(1,r)-num(1,l-1)\),其中\(num(i,j)\)表示\([i,j]\)区 ...
- 数位DP之小小结
资料链接:http://wenku.baidu.com/view/9de41d51168884868662d623.html http://wenku.baidu.com/view/d2414ffe0 ...
- 牛客训练三:处女座和小姐姐(三)(数位dp)
题目链接:传送门 思路:数位dp的记忆化搜索模板 从高位向低位枚举,逐位确定每一位的6的个数,dp[i][s]表示处理到第i条边,状态为s时的数字的个数. 注意,要使用long long类型. #in ...
- SCUT - 289 - 小O的数字 - 数位dp
https://scut.online/p/289 一个水到飞起的模板数位dp. #include<bits/stdc++.h> using namespace std; typedef ...
- [CSP-S模拟测试]:小L的数(数位DP+模拟)
题目传送门(内部题132) 输入格式 第一行一个整数$t$. 接下来$t$行每行一个整数$n$. 输出格式 $t$行,每行一个整数表示答案. 样例 样例输入: 41818231232691052109 ...
随机推荐
- 子shell以及什么时候进入子shell
bash&shell系列文章:http://www.cnblogs.com/f-ck-need-u/p/7048359.html 子shell的概念贯穿整个shell,写shell脚本时更是不 ...
- 动态规划法(三)子集和问题(Subset sum problem)
继续讲故事~~ 上次讲到我们的主人公丁丁,用神奇的动态规划法解决了杂货店老板的两个找零钱问题,得到了老板的肯定.之后,他就决心去大城市闯荡了,看一看外面更大的世界. 这天,丁丁刚回到家,他 ...
- Hive案例05-学生成绩表综合案例
1. 数据说明 (1) student表 hive> select * from student; # 学生ID 学生姓名 性别 年龄 所在系 # sid sname sex age dept ...
- Ocelot中文文档-Getting Started
Getting Started Ocelot是只在.NET Core运行,目前基于netstandard2.0构建的.如果Ocelot适合你们的话,那么这个文档会有所帮助. .NET Core 2.0 ...
- 【Java深入研究】7、ThreadLocal详解
ThreadLocal翻译成中文比较准确的叫法应该是:线程局部变量. 这个玩意有什么用处,或者说为什么要有这么一个东东?先解释一下,在并发编程的时候,成员变量如果不做任何处理其实是线程不安全的,各个线 ...
- 手把手教你实现Confluence6.7.1安装与破解
Confluence是一个专业的企业知识管理与协同软件,也可以用于构建企业wiki. 一.准备工作 下载confluence6.7.1 wget https://downloads.atlassian ...
- 为什么90%的CTO 都做不好绩效管理
十多年从业经历,从 2001 年开始带团队到现在,我几乎经历过所有的 IT 角色.2010 年,我随创始团队筹建国美在线至今,经历了从几百单到现在日均百万订单,从只有家电品类到现在全品类.金融.大 ...
- APP接口调用流程
- php导出excel再IE下乱码问题
$userBrowser = $_SERVER['HTTP_USER_AGENT']; //判断是否是ie内核 $fileName = '会员列表-'.date('Y-m-d', time()).'. ...
- HTML常用标签及属性
标签格式 格式: 双边:<标签名 属性1="值1" 属性2='值2' 属性3=值3>内容</标签名> 单边:<标签名 属性1="值1&quo ...